
CS 784: Final Exam Practice

Winter 2025
Exam Date: April 11, 2025
4:00pm-6:30pm, MC 2034

Instructions
• You are allowed to use any resources you like, including the internet, textbooks, course

notes, calculators, and laptops.

• However, you are not allowed to communicate with anyone else about the exam.

• There are 5 questions on this exam.

• There are 8 pages in this exam (including cover page front and back, and three additional
pages at the end for work that does not fit in the spaces provided).

• There are a total of 100 marks on the exam.

• You have 150 minutes (2.5 hours) to complete the exam.

Question 1 2 3 4 5 TOTAL
Marks 5 30 20 20 25 100

Score

1



CS784 Final Exam Practice Winter 2025

1 Honour Code (5 Points)
□ By checking this box, I confirm that I will not communicate with any other persons about

the exam during the exam time.

(There is actually no reliable way to detect and verify this, but you will feel guilty if you
check the box and do not follow it.)

2 Muiti-Choice and Short Answers (35 Points)
Answer the questions by writing the answer in the provided blank. There may be multiple
correct answers for each question. If so, please write all correct answers in the blank. You will
receive full credit (5 pts) if you write down all correct answers and no incorrect answers, partial
credit (3 pts) if you write down some correct answers and no incorrect answers, partial credit
(1 pt) if you write nothing, and no credit (0 pts) if you write down any incorrect answers.

(Questions 2.1–2.2) When classifying a sentence with a Deep Shallow Averaging Network, we
take the word embeddings as the input, use averaged word embeddings as the features, and
predict the score for each class with a 2-layer perceptron (i.e., with one hidden layer). We
are now interested in analyzing the complexity of this model for a single forward pass for one
sentence. The size of the hidden layer is D, the number of words is S, the size of the embedding
space is E, and the number of classes is K.

C 2.1 (5 points) What is the time complexity of a single forward pass through it for one
sentence, assuming there is no parallelization of computing?
A. O(S + ED + K)
B. O(SEDK)
C. O(SE + ED + DK)
D. O(ED + DK)
E. None of the above

D 2.2. (5 points) What is the space complexity to save the parameters of the 2-layer
perceptron?
A. O(S + ED + K)
B. O(SEDK)
C. O(SE + ED + DK)
D. O(ED + DK)
E. None of the above

(Questions 2.3–2.4) You built a sentiment analysis system that feeds word tokens into a uni-
directional left-to-right recurrent neural network (RNN), then outputs the sentiment class by

2



CS784 Final Exam Practice Winter 2025

putting the final hidden state through a linear + softmax layer. You observe that your model
incorrectly predicts very positive sentiment for the following (negative sentiment) passage: The
play was terrible. The performances were lackluster, and the acting was unconvincing. Then, there was
a long line to exit the theatre building. At least the dinner was excellent.

D 2.3. (5 points) Why do you think the model make this decision?
A. RNNs are not good models for sequence classification tasks
B. RNNs do not model the unknown words like lackluster well
C. RNN training is very stable
D. An RNN’s hidden state is heavily influenced by recent tokens
E. None of the above

ABCD, or BCD 2.4. (5 points) What other methods might work better than unidirectional
RNNs for this example by addressing the identified issue?
A. A bag-of-words model (i.e., average word embeddings as the sentence feature)
B. Weighted average with trainable attention mechanism as the sentence feature
C. A Transformer, using the first token ([CLS]) as the sentence feature
D. Bidirectional RNNs, using the concatenation of the first and last hidden states as the sen-
tence feature
E. None of the above

ABD 2.5. (5 points) Suppose you train a model for a sentence-level classification task (such
as sentiment analysis) over a dataset containing only singular nouns. You then apply it to a
test set also containing plural nouns. Which of the following could help your model generalize
better?
A. Stemming (i.e., change the word to its canonical form, for both training and testing data)
B. Use subword tokenization
C. Using a word-based LSTM
D. Using pre-trained word embeddings
E. Using a bag-of-words featurization

3



CS784 Final Exam Practice Winter 2025

3 Constituency Parsing (20 Points)
Consider the corpus that contains two sentences and their constituency parse trees (shown
below).

S

NP

NN

time

VP

VBZ

flies

PP

IN

like

NP

DT

an

NN

arrow

S

NP

NN

fruit

NNS

flies

VP

VBP

like

NP

DT

an

NN

arrow

3.1 (6pts) Write down the probabilistic context-free grammar (PCFG) that maximizes the prob-
ability of the corpus. A PCFG defines a rewrite rule A → BC with a probability P(A → BC) or
P(A → B), where A is a non-terminal symbol and B and C are either non-terminal or terminal
symbols. The probabilities of rules that share the same left-hand side symbol A should sum to
1. Please include the lexical rules (i.e., those with the right-hand side containing only terminal
symbols).

One example rule in the answer (you don’t need to write it down again) is:
(1.0) S -> NP VP, where (1.0) denotes the corresponding probability.

To maximize the probability of the corpus, the principled way is to write down the log prob-
ability of the corpus in terms of the parameters being the optimization objective, and set the
first-order gradient of this huge probability formula w.r.t. each parameter to zero. Additional
constraints are the probability of rules that share the same left-hand side sum up to 1. Eventu-
ally, the solution to this constrained optimization problem is just counting based estimation.

4



CS784 Final Exam Practice Winter 2025

(1.0) S → NP VP
(1/4) NP → NN
(1/4) NP → NN NNS
(1/2) NP → DT NN
(1/2) VP → VBZ PP
(1/2) VP → VBP NP
(1.0) PP → IN NP

(1/4) NN → time
(1/4) NN → fruit
(1/2) NN → arrow
(1.0) NNS → flies

(1.0) DT → an
(1.0) VBZ → flies
(1.0) VBP → like

(1.0) IN → like

3.2 (4pts) According to the PCFG you wrote in 3.1, what are the probabilities of the sentences
shown in the trees?

Multiplying the probabilities of the rules in the parse tree, we have:

P(T1) =P(S → NP VP) · P(NP → NN) · P(NN → time) · P(VP → VBZ PP)
· P(VBZ → flies) · P(PP → IN NP) · P(IN → like)
· P(NP → DT NN) · P(DT → an) · P(NN → arrow)

=1 · 1
4
· 1

4
· 1

2
· ·1 · 1 · 1 · 1

2
· 1

2
=

1
128

P(T2) =P(S → NP VP) · P(NP → NN NNS) · P(NN → fruit) · P(NNS → flies)
· P(VP → VBP NP) · P(VBP → like) · P(NP → DTNN) · P(DT → an)
· P(NN → arrow)

=1 · 1
4
· 1

4
· 1 · 1

2
· 1 · 1

2
· 1 · 1

2
=

1
128

5



CS784 Final Exam Practice Winter 2025

3.3 (3pts) What is (are) the sentence(s) with the highest probability according to the PCFG you
wrote down in 3.1? What is the probability of this sentence/these sentences?

Let f [x] denote the highest-probability string(s) derived from non-terminal or pre-terminal
x, and p[x] denote the corresponding probability. We can use a bottom-up process to obtain all
f [x] for all x.

f [IN] = like p[IN] = 1
f [VBP] = like p[VBP] = 1
f [VBZ] = flies p[VBZ] = 1

f [DT] = an p[DT] = 1
f [NNS] = flies p[NNS] = 1

f [NN] = arrow p[NN] =
1
2

compare across all NN rules

f [NP] = an arrow p[NP] =
1
4

= p(NP → DT NN)× p[NN]

compare across all NP rules

f [PP] = like an arrow p[PP] =
1
4

= p(PP → IN NP)× p[IN]× p[NP]

f [VP] = flies like arrow p[VP] =
1
8

= p(VP → VBZ PP)× p[VBZ]× p[PP]

or like an arrow p[VP] =
1
8

= p(VP → VBP NP)× p[VBP]× p[NP]

f [S] = an arrow flies like an arrow p[S] =
1

32
= p(S → NP VP)× p[NP]× p[VP]

or an arrow like an arrow p[S] =
1

32
= p(S → NP VP)× p[NP]× p[VP]

3.3 (7pts) What is (are) the most likely parse tree(s) of the “sentence” arrow flies like an arrow?
What is the probability?

We consider all possible parse trees that can be derived using the PCFG for the sentence
arrow flies like an arrow.

6



CS784 Final Exam Practice Winter 2025

Candidate Parse 1: S

NP

NN

arrow

VP

VBZ

flies

PP

IN

like

NP

DT

an

NN

arrow
Total Probability:

P1 = P(S → NP VP) · P(NP → NN) · P(NN → arrow)

· P(VP → VBZ PP) · P(VBZ → flies) · P(PP → IN NP)
· P(IN → like) · P(NP → DT NN) · P(DT → an) · P(NN → arrow)

= 1 · 1
4
· 1

2
· 1

2
· 1 · 1 · 1 · 1

2
· 1 · 1

2
=

1
64

Candidate Parse 2 (Tree B): S

NP

NN

arrow

NNS

flies

VP

VBP

like

NP

DT

an

NN

arrow
Total Probability (Tree B):

P2 = P(S → NP VP) · P(NP → NN NNS) · P(NN → arrow) · P(NNS → flies)
· P(VP → VBP NP) · P(VBP → like) · P(NP → DT NN) · P(DT → an) · P(NN → arrow)

= 1 · 1
4
· 1

2
· 1 · 1

2
· 1 · 1

2
· 1 · 1

2
=

1
64

7



CS784 Final Exam Practice Winter 2025

You are not required to write the CKY algorithm out for this question, however, this problem is
solved by the following CKY algorithm. Let f [NT, ℓ, r] denote the probability of the best (i.e.,
highest-probability) parse tree of starting with NT and deriving the substring of the desired
sentence from ℓ to r. To calculate each value of f [NT, ℓ, r], we enumerate the rules with NT as
the left-hand side, and for each rule with two right-hand-side nodes, we enumerate all possible
splits of the substring into two parts.

Initialize all f[NT, l, r] to 0

for length in 1..5:

for l in 1..5-length + 1:

r = l + length - 1:

for nt in all_nt:

for rule in rules[nt]:

if rule has one RHS node:

f[nt, l, r] = max(f[nt, l, r], p[rule] * f[rule.rhs[0], l, r])

else:

assert rule has two RHS nodes

for mid in l..r-1:

f[nt, l, r] = max(f[nt, l, r], p[rule] * f[rule.rhs[0], l, mid] *

f[rule.rhs[1], mid+1, r])

return f[S, 1, 5] and backtrace to get the parse tree(s)

8



CS784 Final Exam Practice Winter 2025

4 Probing and Classifier (20 Points)
Probing is a technique used to analyze the representation of models, including but not neces-
sarily limited to language models, through a lens of task-specific performance. Given a task
T and a model M, the way to conduct probing M on T is to train a classifier C on the hidden
states of M, using the training set for task T. A development set for task T is used to prevent
over-fitting to the training set. We then evaluate the performance of the trained classifier C on
the hold-out test set of task T, the obtained result R is referred to as the probing accuracy.

4.1 (10 points) True or False: for two models M1 and M2, denote R1 and R2 as the probing
accuracy of M1 and M2, respectively, while keeping other factors fixed. If R1 > R2, then it is
always the case that the hidden states of M1 contain more information about the task T than
those of M2. Please explain your answer.

No, because the conclusion depends on the linking hypothesis that the probing accuracy
is a good measure of the amount of information contained in the hidden states, which is not
necessarily true.
4.2 (10 points) Suppose we now have a perfect probe classifier C that can perfectly predict the
non-terminal label of a textual constituent (i.e., a span of words). Describe how you would use
this probe classifier to determine which word is the head.

You may assume all inputs are valid constituents.
Suppose we can backpropagate the gradients of the probe classifier C to the hidden states

of the model M. We can then compute the gradients of input tokens embeddings with respect
to the output of the probe loss classifier ∇XL(X, Θ), where X denotes the input token (embed-
dings) of the constituent and Θ denotes the parameters of the model and the probe classifier, L
denotes the loss function that we used to train the probe classifier.

Let ∇xiL(X, Θ) denote the gradient of the probe classifier with respect to the i-th token
embedding xi. Since the gradient norm generally indicates “how much the loss will change if
we change the input a little,” we can use the gradient norm to determine which token is the
head of the constituent (larger means more likely).

This process intuitively aligns the definition of the head of a constituent, i.e., the most im-
portant word in the constituent that determines the constituent category. Other proposals that
use this property of constituent head will also be accepted.

9



CS784 Final Exam Practice Winter 2025

5 Model Editing (25 Points)
Model editing [1, inter alia] is a technique to modify the behaviour of a pretrained model with-
out retraining it from scratch. Particularly, it requires a set of training sequence pairs (xi,yi),
where xi is the input and yi is the desired output. The goal is to modify the model’s param-
eters so that it produces the desired output for the training examples while maintaining its
performance on other examples.

Consider a simplified 1-layer Transformer model as follows, where we would like to mod-
ify the model’s parameter so that it produces a single desired output token y given an input
sequence x = (x1, x2, . . . , xn) with sufficiently high probability. The model first computes the
embedding E of the input sequence using a learned embedding matrix, then computes the
intermediate representations H , and finally produces the output token y using a linear layer.

E = Embedding(x) ∈ Rn×d (word embeddings)

K,Q,V = WkE,WqE,WvE ∈ Rn×d (key, query, and value tensors)

H = softmax(
QK⊺
√

d
)V ∈ Rn×d (hidden states)

h =
1
n

n

∑
i=1

Hi ∈ Rd (mean-pooling hidden state)

u = Woh ∈ RV (distribution logits with parameter Wo ∈ RV×d)

pi =
exp(ui)

∑j exp(uj)
p ∈ RV (distribution over the vocabulary)

5.1 (10 points) Suppose the vocabulary size is V, complete the model pipeline by filling in the
following equations. Please do not write softmax operator in the last equation, instead, use
exp and ∑ operators. (Erratum: The original question missed a subscript i in the last equation,
which is now corrected.)

There are other possible ways in calculating u—anything that is equivalent to the solution
above is acceptable.

5.2 (5 points) Suppose you would like to edit the model so that it produces the output token y
given the input sequence x with sufficiently high probability. You are only allowed to modify
one matrix among Wk, Wq, and Wv. Which one would you choose and why?

By modifying Wv, we can directly change the content of the hidden states, whereas there
needs more indirect steps for modifying Wk and Wq to change the content of the hidden states.

In nonlinear setups, modifying Wv will also possibly change the space spanned by the
hidden states, which is not the case for Wk and Wq.

10



CS784 Final Exam Practice Winter 2025

5.3 (5 points) You are allowed to only modify Wo by adding a small perturbation W∆. You are
asked to have a loss function, and get W∆ by gradient descent—that is, W∆ = ∂L

∂Wo
. Please

write down the loss function you would use.
Taking x as the input to the neural network and y as the desired output, we can use the

cross-entropy loss function as follows:

L =− logpy

Any loss function that is suitable for the task, e.g., the L2 loss, is acceptable.
5.4 (5 points) What is the rank of W∆? Please prove.

rank(W∆) = rank(
∂L

∂Wo
) = 1.

Proof: W∆ =
∂L

∂Wo
=

∂L
∂u

· ∂u

∂Wo
.

The gradient of the loss L with respect to u is a vector of size V, denoted as ∂L
∂u ∈ RV . The

gradient of u with respect to Wo is:

∂u

∂Wo
= h⊺,

where h ∈ Rd is the mean-pooled hidden state.
Thus, W∆ can be expressed as:

W∆ =
∂L
∂u

· h⊺,

which is the outer product of a vector of size V and a vector of size d. The result is a matrix of
size V × d.

Since the outer product of two vectors always has rank 1 (assuming neither vector is the
zero vector), the rank of W∆ is:

rank(W∆) = 1.

□

References
[1] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing

factual associations in gpt. Advances in Neural Information Processing Systems, 35:17359–
17372, 2022.

[2] Allyson Ettinger, Ahmed Elgohary, and Philip Resnik. Probing for semantic evidence of
composition by means of simple classification tasks Proceedings of the 1st workshop on
evaluating vector-space representations for NLP

11



CS784 Final Exam Practice Winter 2025

Extra Page

12



CS784 Final Exam Practice Winter 2025

Extra Page

13



CS784 Final Exam Practice Winter 2025

Extra Page

14


	Honour Code (5 Points)
	Muiti-Choice and Short Answers (35 Points)
	Constituency Parsing (20 Points)
	Probing and Classifier (20 Points)
	Model Editing (25 Points)

