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Probability Information Theory: One Distribution Information Theory: Two Distributions
900000000 0000000 000000

Probability Spaces

Let Q) be a finite set. Let P: Q) — [0, 1] be a function such that

Y Plw) =1

we)

We often refer to () as a sample space or outcome space and
the function P as a probability distribution on this space.

An event can be thought of as a subset of all possible outcomes,
i.e., any E C () defines an event, and we define its probability as

PlE = Y P(w).

weE
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Random Variable and Expectation (Simplified)

In most cases we encounter, a random variable is a function
X: 00— R.

We may define the expectation of a random variable X as

E[X] = Z P(w)X(w).

we)

A random variable X is technically neither random nor a
variable. However, we may informally understand it as a variable
whose value is randomly drawn.
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Probability Space and Random Variables: Example

Rolling a fair dice gives

Sample space Q) = {one, two, three, four, five, six}
Random variable X : ) — R such that X(one) = 1,
X(two) =2,..., X(six) = 6

Probability P(w) =

c\\n—l

1
Event Prob. IP[even number] = P(two) + P(four) + P(six) = 5

1
Event Prob. IP[number < two] = P(one) + P(two) =3

Expectation E[X] = ) P(w)X(w) =35
we)
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Probability Space and Random Variables: Example

If you'd like to change X(one) = 6, it also works:

Sample space () = {one, two, three, four, five, six }
Random variable X : QO — R such that X(one) = 6,
X(two) =2,..., X(six) =6

Probability P(w) = 6
Event Prob. IP[even number] = P(two) + P(four) + P(six) = %
Event Prob. IP[number < two|] = P(one) + P(two) = %
Event Prob. IP[X(number) < 2] = P(two) =-
Expectation E[X] Z P(w =4.33

we)
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Conditional Probability
Conditioning on an event E is equivalent to restricting the
probability space to E. The probability measure is then

P(w)
Pe(w) = W Yw € E,

0 otherwise.

We define the conditional probability of an event F given E as

PIF|E] =) Pe(w)= )_

weF weENF

P(w) P[EAF]
PlE] — P[E]

We can calculate the conditional expectation similarly:

E[(X| E] = ) Pe(w)X(w

weE
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Joint Probability

The joint probability of two events E and F is defined as

PEAA = Y Plw).

From the previous slide, we know that

P[EA F| = P[F| E]P|E]
= PP[E| FIP[F].



Probability
00000080

Independence

Two non-zero probability events E and F are independent if
P[E| F] = P[E] (or P[F | E] = IP[F]).

Two random variables X and Y defined on the same finite
probability space are independent if

PX=x| Y=y =P[X=x

for all non-zero probability events {X = x} := {w : X(w) = x}
and {Y=y} :={w: Y(w) = y}.
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Common Notations on Random Variables

In literature, P(X = x) usually denotes “the probability that the
random variable X takes on the value x"—this is, actually,

P({w: X(w) = x}).

{w : X(w) = x} is an event, with event probability applicable.
e Conditional probability P(X= x| Y=y) = P(x]| y).

® Joint probability P(X = x, Y=y) = P(x,y).

® Marginal probability P(x) =Y, P(x,y), P(y) = L« P(x,y).
X and Y are independent iff. P(x,y) = P(x)P(y).

e Expectation E[X] = E,.p[x] =Y, x- P(X=x) = ¥, xP(x).
Most cases we see in this class will be discrete random variables,
with the possible values from a finite set.

In what follows, we will use the (intuitive) notations on this slide.



Information Theory: One Distribution
@000000

Why Information Theory?

Information theory arises in many places and many forms in
computational linguistics and deep learning.

Information-theoretic concepts gives us a formal way to reason
about the amount of information in data, and rationalize many
linguistic phenomena.

Caveat, important: Information-theoretic explanations make sense
when they are supported by empirical evidence; it is never the case
that information theory is a universal explanation for everything.
Many model training objectives are derived from information
theory.
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Entropy

The entropy of a (discrete) random variable X with probability
distribution P(X) is defined as

ZP log P(x)
It's obvious that H(X) > 0:

P(x) <1= —log P(x) > 0.

H(X) is measured in bits if the base of the logarithm is 2.

It can be measured in nats if the base of the logarithm is e.
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Shannon's Source Coding Theorem

Why is — log, P(x) a number of bits?

A prefix-free code for X' assigns a bit (0/1) string c(x) to each
x € X such that no ¢(x) is a prefix of another ¢(X').

® This ensures that the code, i.e., concatenation of arbitrarily many
¢(x), is uniquely decodable.

We consider the expected per-element code length under the
distribution P, i.e., E .p[|c(x)|].

Theorem 1: For any ¢, we have E,_p[|c(x)|| > Ha(X).
® See [this url] for a proof by Michael Langer.

Theorem 2: There exists a prefix-free code ¢ such that
E,p[|c(x)|] < Ha(X) + 1, by assigning each x a bit string of
length [—log, P(x)].


https://www.cim.mcgill.ca/~langer/423/lecture5.pdf
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Intuitive Example for the Source Coding Theorem

We have a random variable X that takes values from {a, b, ¢, d}
with probabilities {1, 1,1 1

2'418'8J"
There are two prefix-free codes ¢; and ¢:
® ci(a) =00 * ofa) =
® c(b)=01 ° ()_10
® ¢(c)=10 * o(c) =110
° c(d) =11 . c2(d) =111
Expected encoding length: Expected encoding length:
1 1 1 1
2X = 4+2X%x = I1x=-+2x-=
X 3 +2 X 4—|— X 5 +2 X 4+
1 1 1 1
2X —42Xx ==2 3X=-+3x=-=175

8 8 8 8
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Joint Entropy

The joint entropy of two random variables X and Y'is defined as

H(X,Y) = =) _ P(x.y)log P(x,y).

The joint entropy is a measure of the uncertainty in the joint
distribution of X and Y.
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Conditional Entropy
The conditional entropy of Y given X is defined as
H(Y|X):ZP H(Y| X = x)
= - XZ P(x)P(y | x) log P(y | x)

=—) P(xy)logP(y| x).

The conditional entropy measures the uncertainty in Y when X'is
known.

Exercise: show that
H(X,Y) = H(X)+ H(Y| X) = H(Y)+ HX]|Y).

Hint: expand everything.
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Mutual Information

The mutual information between two random variables X and Y

is defined as
(X Y) = H(X) +HY)—HXY ™ HOY
H(X) — HX | Y)
= H(Y) — H(Y| X).

HX,Y)
[Figure from Wikipedia]

It measures the amount of information that X and Y share: how
much knowing one variable reduces uncertainty about the other.


https://en.wikipedia.org/wiki/Mutual_information
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Entropy and Cross Entropy

The entropy H(X) of a random variable is the optimal (minimal)
expected number of bits needed to encode a sample x ~ P(x).

Can be also viewed as the entropy of the distribution P, H(P).

Let P and Q be two probability distributions over the same set.
The cross entropy of P and Q is defined as

H(P, Q) = Ex-p[— log Q(x)]

Plain language: the expected number of bits per sample is H(P, Q),
if we use the optimal code for @ to encode samples from P.

We will show H(P, Q) > H(P).
Not to be confused with the (one-distribution) joint entropy

H(X, Y)!
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The Kullback—Leibler Divergence

The Kullback-Leibler (KL) divergence of P from Q is defined as

Dii(P || Q) = Exp {Iog (F?)Ei?)] :

Now we will prove that Dk, (P || Q) > 0 for any P and Q.
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Proof of Dk, (P || @) > 0: Jensen's Inequality

Definition (Convex Function)

A function f: R — R is convex if for all x,y € R and A € [0, 1],

fidx+ (1= A)y) < AMx)+ (1 = A)Ay).

Informally, a convex function is a function that upcurves everywhere.

A convex function f satisfies Jensen's inequality:
E[X]) < E[f(X)]
Can be proved by induction on the number of samples.

Example: — log(x) is a convex function.
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Proving Dy (P || Q) > 0

Dk (P Q) = Exop [Iog giiﬂ = Exep [— log (,38]

> —log Exp [g((g]

e [£ 0 2]

X

~—og [ 000

= —logl=0

Exercise: show that /(X; Y) > 0.
Hint: Express /(X; Y) in the form of D .
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Cross Entropy and Kullback—Leibler Divergence

Dii(P|| Q) =E,p [Iog P(x)}

Q(x)
= [E,p [log P(x) — log Q(x)]
= H(P, Q) — H(P)

About H(P, Q): Dk (P || Q) > 0= H(P, Q) > H(P).
Suboptimal code for P will result in a longer expected code length.

About Dk, (P || Q): it measures the inefficiency of using code for
Q to encode samples from P, i.e., how many extra bits per sample
are expected to be used.
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Next

Statistical Methods
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