Overview Basic Regular Expression Syntax
g P! i
000 0000000000000 0

CS 784: Computational Linguistics
Lecture 2.1: Regular Expressions

Freda Shi

School of Computer Science, University of Waterloo
fhsQuwaterloo.ca

January 9, 2025

[Some slides adapted from Joyce Chai.]

Overview Basic Regular Expression Syntax
®00 00000000000000

Why Regular Expressions?

Regular expressions are a powerful tool for string manipulation,
with simpler implementation and higher execution efficiency
than general-purpose programming languages.

They are integrated into all modern programming languages.

Overview Basic Regular Expression Syntax
®00 00000000000000

Why Regular Expressions?

Regular expressions are a powerful tool for string manipulation,
with simpler implementation and higher execution efficiency
than general-purpose programming languages.

They are integrated into all modern programming languages.

The Python code below finds all words that contain at least two

a"s in the given string.

import re

result = re.findall(

r'\b\wxa\wxa\wx\b"',

'anaconda banana cantaloupe durian elephant'
)
print (result)

Overview Basic Regular Expression Syntax
oeo 0000000000000 0

Implementing the Same Function in Python

def find words_with _more_than 2 a(text):

words = text.split()
result = []
for word in words:

count_a = word.count('a')

if count_a > 1:

result.append (word)

return result

result = find_words_with more than 2 a(
'anaconda banana cantaloupe durian elephant'

)
print(result)

Overview Basic Regular Expression Syntax
ooe 00 00

Key ldea of Regular Expressions

A string is a sequence of symbols.

For text-based search, a string is a sequence of alphanumeric
characters (letters, numbers, spaces, tabs, and punctuation marks).

Overview

Basic Regular Expression Syntax
ooe 00 00

Key ldea of Regular Expressions

A string is a sequence of symbols.

For text-based search, a string is a sequence of alphanumeric
characters (letters, numbers, spaces, tabs, and punctuation marks).

Regular expression is a pattern that describes a set of strings.

Overview Basic Regular Expression Syntax
ooe 00000000000000

Key ldea of Regular Expressions

A string is a sequence of symbols.

For text-based search, a string is a sequence of alphanumeric
characters (letters, numbers, spaces, tabs, and punctuation marks).

Regular expression is a pattern that describes a set of strings.

This set of strings can be also referred to as a (formal) language.

The language that r'\b\wxa\w*a\wx*\b' defines is the set of all

words that contain at least two “a’s.

Overview Basic Regular Expression Syntax
000 ©0000000000000

Inductively Defined Regular Expressions

Regular expressions can be defined inductively.

® The empty string € is a regular expression.

® Any symbol in the alphabet is a regular expression.

® |f A and B are both regular expressions, then so are:
® The concatenation of A and B (A followed by B).
® The disjunction of A and B (either A or B).

® The Kleene (pronounced as clay-knee) star of A (repeat A zero or
more times).

Overviev Basic Regular Expression Syntax
000 0@000000000000

Special Symbols

In normal regular expressions, the following symbols have special
meanings:

Symbol Meaning/Matches

Any character

+ One or more of the preceding character
catt ‘cat’, ‘caat’, ‘caaat’, etc.

* Zero or more of the preceding character
caxt ‘ct’, ‘cat’, ‘caat’, ‘caaat’, etc.

? Zero or one of the preceding character
ca’t ‘ct’, ‘cat’

Overview Basic Regular Expression Syntax
000 00800000000000

More Counting Operators

Numbers in curly braces specify the number of repetitions.

Symbol Meaning/Matches

{n} Exactly n of the preceding character
ca{2}t ‘caat’

{n,} At least n of the preceding character
ca{2,}t ‘caat’, ‘caaat’, ‘caaaat’, etc.

{,m} At most m of the preceding character
ca{,2}t ‘ct’, ‘cat’, ‘caat’

{n,m} Between n and m of the preceding character
ca{2,4}t ‘caat', ‘caaat’, ‘caaaat’

Overviev Basic Regular Expression Syntax
000 00@00000000000

More Counting Operators

Numbers in curly braces specify the number of repetitions.

Symbol Meaning/Matches

{n} Exactly n of the preceding character
ca{2}t ‘caat’

{n,} At least n of the preceding character
ca{2,}t ‘caat’, ‘caaat’, ‘caaaat’, etc.

{,m} At most m of the preceding character

ca{,2}t ‘ct’, ‘cat’, ‘caat’

{n,m} Between n and m of the preceding character
ca{2,4}t ‘caat', ‘caaat’, ‘caaaat’

All counting operators can be used to repeat a regular expression with
multiple characters.

Example: (ab)+ matches ‘ab’, ‘abab’, ‘ababab’, etc.

Basic Regular Expression Syntax
000@0000000000

Anchors

Anchors are special characters that match the beginning or end of

a string.
Symbol Meaning/Matches
- Beginning of a string
“cat ‘cat’ at the beginning of a string
$ End of a string
cat$ ‘cat’ at the end of a string
\b Word boundary

\bcat\b

‘cat’ as a whole word, not like in concatenation

Basic Regular Expression Syntax
0000@000000000

Concatenation

String concatenation between regular expressions A and B is simply
denoted by AB.

Regular Expression Matches

Cat ‘Cat’
CatDog ‘CatDog’

Overview Basic Regular Expression Syntax
000 00000800000000

Disjunctions

Brackets [| are used to specify a set of symbols.

Any character inside the brackets is a match.

Regular Expression Matches

[Cclat ‘Cat’, ‘cat’
[1234567890] Any digit

https://www.asciitable.com/

Basic Regular Expression Syntax
00000800000000

Disjunctions

Brackets [| are used to specify a set of symbols.
Any character inside the brackets is a match.

Also supports range matching: any symbol with an ASCII code
between the specified range is a match.

Regular Expression Matches

[Cclat ‘Cat’, ‘cat’
[1234567890] Any digit

[0—9] Any digit
[a—zA—Z] Any English letter

See ASCII table at https://www.asciitable.com/.

https://www.asciitable.com/

Basic Regular Expression Syntax
00000800000000

Disjunctions

Brackets [| are used to specify a set of symbols.
Any character inside the brackets is a match.

Also supports range matching: any symbol with an ASCII code
between the specified range is a match.

Some characters (., +, *, 7, |) escape their special meanings when
inside brackets.

Regular Expression Matches

[Cclat ‘Cat’, ‘cat’
[1234567890] Any digit

[0—9] Any digit
[a—zA—Z] Any English letter
Cat [] ‘Cat.

See ASCII table at https://www.asciitable.com/.

https://www.asciitable.com/

Overview

Basic Regular Expression Syntax
000000@0000000

Negations in Disjunctions

~is the negation symbol in regular expressions.

Regular Expression

Matches

[
[0-9]
[a—z]

Neither ‘C" nor 'c’
Any non-digit
Any non-lowercase letter

Overview

Basic Regular Expression Syntax
000000@0000000

Negations in Disjunctions

~is the negation symbol in regular expressions.

The caret symbol only means negation when it is the first
character in brackets, otherwise it is the character itself.

Regular Expression

Matches

[TCq Neither ‘C" nor ‘c'
[T0—9] Any non-digit

[Ta—z] Any non-lowercase letter
[CT] Neither ‘C’ nor ™

a’b ‘a’b’

Overview

Basic Regular Expression Syntax
00000008000000

Common Symbol Sets

There are some predefined common sets of symbols that are often
used in regular expressions.

Symbol Meaning

\d [0—9], any digit

\D [T0—9], any non-digit

\w [a—zA—Z0—9_], any alphanumeric/underscore

\W [Ta—zA—Z0—9_], any non-alphanumeric/underscore
\s [\t\n\r\f], any whitespace

\S [\t\n\r\f], any non-whitespace

Basic Regular Expression Syntax
00000000e00000

String Disjunctions

Anything inside a single pair of brackets matches a single
character, no matter how long the pattern is.

To enable disjunctions of strings, use the pipe symbol |.

Regular Expression Matches

Cat|Dog ‘Cat’ or ‘Dog’
alblc [abc]
[Cclat |[Dd]og ‘Cat’, ‘cat’, ‘Dog’, or ‘dog’

Overview

(e]e]e}

Basic Regular Expression Syntax
00000000080000

Expressivity of Regular Expressions

Regular expressions have the same expressive power as
nondeterministic finite-state automata, which is less powerful
than context-free grammars.

For example, there's no regular expression recognizing
L ={a"b" | n>0}.

https://www3.nd.edu/~dchiang/teaching/theory/2023/
https://www3.nd.edu/~dchiang/teaching/theory/2023/
https://student.cs.uwaterloo.ca/~cs360/

Overview Basic Regular Expression Syntax
000 00000000080000

Expressivity of Regular Expressions

Regular expressions have the same expressive power as
nondeterministic finite-state automata, which is less powerful
than context-free grammars.

For example, there's no regular expression recognizing

L ={a"b" | n>0}.

See more examples and discussions in Notre Dame CSE 30151
Unit 1 and CS 360.

https://www3.nd.edu/~dchiang/teaching/theory/2023/
https://www3.nd.edu/~dchiang/teaching/theory/2023/
https://student.cs.uwaterloo.ca/~cs360/

Overview Basic Regular Expression Syntax
000 0000000000e000

Useful Python Functions

import re

® re.search(pattern, string)
Search for the pattern anywhere in the string.

Overview Basic Regular Expression Syntax
000 00000000008000

Useful Python Functions

import re
® re.search(pattern, string)
Search for the pattern anywhere in the string.
® re.match(pattern, string)
Match the pattern at the beginning of the string.

Basic Regular Expression Syntax

Overview
000 0000000000@000

Useful Python Functions

import re

® re.search(pattern, string)

Search for the pattern anywhere in the string.
® re.match(pattern, string)

Match the pattern at the beginning of the string.
® re.split(pattern, string)

Split the string by the pattern.

Overviev Basic Regular Expression Syntax
000 0000000000e000

Useful Python Functions

import re
® re.search(pattern, string)
Search for the pattern anywhere in the string.
® re.match(pattern, string)
Match the pattern at the beginning of the string.
® re.split(pattern, string)
Split the string by the pattern.
® re.sub(pattern, replacement, string)
Replace the pattern with the replacement in the string.

Basic Regular Expression Syntax
0000000000e000

Useful Python Functions

import re

® re.search(pattern, string)
Search for the pattern anywhere in the string.
® re.match(pattern, string)
Match the pattern at the beginning of the string.
® re.split(pattern, string)
Split the string by the pattern.
® re.sub(pattern, replacement, string)
Replace the pattern with the replacement in the string.
® re.findall(pattern, string)
Find all occurrences of the pattern in the string.
Caveat: once a pattern is found, the next search starts from the end
of the previous match—for example,
re.findall(xr'(ab)+', 'abab') will return ['ab'].

Overview Basic Regular Expression Syntax
000 00000000000800

Complexity of Regular Expressions

The complexity of regular expressions depends on

1. The complexity of the regular expression itself;
2. The algorithm used to match the regular expression.

https://www3.nd.edu/~dchiang/teaching/theory/2023/
https://student.cs.uwaterloo.ca/~cs360/

Basic Regular Expression Syntax
00000000000800

Complexity of Regular Expressions

The complexity of regular expressions depends on

1. The complexity of the regular expression itself;
2. The algorithm used to match the regular expression.

® Deterministic Finite Automata (DFA) can match regular expressions in
O(n) time, where n is the length of the string;
Constructing a DFA from a regular expression is O(2™), where m is
the number of symbols in the pattern.

® Non-deterministic Finite Automata (NFA) can match regular
expressions in O(nm) time.

® Backtracking algorithms can match many simple patterns in O(n),
and complex regular expressions (like (alaa)*b) in O(2") time.

See more in Notre Dame CSE 30151 Unit 1 and CS 360.

https://www3.nd.edu/~dchiang/teaching/theory/2023/
https://student.cs.uwaterloo.ca/~cs360/

Basic Regular Expression Syntax

Overview
000000000000 e0

(e]e]e}

Revisiting the Example on Slide 2

import re

result = re.findall(
r'\b\wxa\wxa\wx\b',
'anaconda banana cantaloupe durian elephant'

)
print (result)

Basic Regular Expression Syntax

Overview
000000000000 e0

(e]e]e}

Revisiting the Example on Slide 2

import re

result = re.findall(

r'\b\wxa\wxa\w*\b',

'anaconda banana cantaloupe durian elephant'
)
print (result)

Regular Expression Meaning

\b Word boundary
\ W Zero or more alphanumeric characters
a The letter ‘a’

Overview Basic Regular Expression Syntax
000 0000000000000e

Next

Probability and Basic Information Theory

	Overview
	Basic Regular Expression Syntax

