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[Most slides adapted from Roger Levy.]



Statistics

In Lecture 2.2 we reviewed basics of probability: the logical
calculus of uncertainty—a branch of mathematics.

The primary focus of this lecture is statistics: the mathematics,
science, craft, and art of drawing inferences from data.

The two fields are fundamentally different, but probability is used
extensively in statistics.
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Parameter Estimation

Consider a binary random variable Y with two possible outcomes
(e.g., coin flips), head (1) and tail (0).
Y obeys a Bernoulli distribution with parameter 6:

P(Y=1)=6, P(Y=0)=1—-0

Parameter estimation figures out what the parameter 6 is.

In general, we will use y to refer to observed-outcome data and 6
to refer to the model parameter(s) to be estimated.

From the parameter-estimation perspective, deep learning is
statistics.
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Statistical Estimators

Estimator: a procedure for guessing a quantity of interest within a
population based on a sample.

Example: The relative frequency estimator for 6 is the
proportion of observed outcomes that are 1:

Indicator of estimator
—__ 1y
b= S Yie1Yi

Data are stochastic, so estimators give random variables.
Bias of an estimator: E[f] — 6.

Z Y;
Variance of an estimator is the ordinary variance:
Var[6] = E[(0 — ]E[G])z] = (n)

ex,fnd

o Inearl 1
E[0] " tny]E —=.nf=0

Good estimators have favorable bias-variance trade-offs.
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Maximum Likelihood Estimation

LO;y)=P(y|0)  Oue= arg max L(6;y)

#Toss Outcome 0.101 !
1 T i
5 H ) 0.08 i
3 T 5 0,06 |
4 T o i
T :
. I 0.04 !
The maximum Q :
likelihood estimate 0.021 i
(MLE) also turns out to | aximum 6 = 0.25
. rmaximum @ = 0.,
be the relative frequency 0.001 : :

estimate (RFE) 0.0 0.2 0.4 0 0.6 0.8 1.0
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Maximum Log-Likelihood Estimation
log(x) is monotonically increasing w.r.t. x, so
arg maxlog L(6;y) = argmax L(6;y)
0 0

We usually assume independence of observations, so

=1170s10)

log L(0;y) = ZlogPy,\O Zy;log9+(1—)’i)|og(1—9)
i=1 i=1

log L(6; y) is more derivative-friendly.

To minimize it, we can set its derivative w.r.t. 8 to O:

q log L(6;y) =0

do
n . 1— : . YL
Z o_ Y =0=0=- Vi
l:l\a;/ \1_6, nl:l

added if  added if y; =0
yi=1
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Bayesian Parameter Estimation

The Bayes' rule:

P(A| B) < P(B| A)P(A)

Assume that the model parameters @, background knowledge
(prior) /, and observed data Y are all random variables.

We are interested in the posterior distribution P(0 | Y, /).

posterior
PO |Y, )< P(Y|O,I)P@O|I) (Bayes' rule)
=P(Y|0)P(O0|]) (conditional independence)
——

prior
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Linear Regression

Example: Beta Distribution for Coin Flips

The Beta distribution express background knowledge / as two
“pseudo-count” parameters «; and ay:

Summary

5 -~ Beta(1,1)

—— Beta(3, 3)

4 —— Beta(2, 4)

gr1-1(1 — g)re1 s et 091
P(9 ’ o1, 062) = £
B(ay, ) 2
: ! g —1 ap—1 ! W/JH J
Normalizer B(ay, a2) :/0 017 (1—0)*2""do L

0.0 0.2 0.4 0.6 0.8 1.0
2]

Beta distribution is a conjugate prior for the Bernoulli likelihood:

posterior likelihood prior
—— — N —
P(@ ’ Y,Ctl,oég) [0 P(Y’ 9) P(9 ‘ 0&1,0&2)
— 9m(1 _ 9),,,,,, X 904171(1 _ 9)a2fly

where m is the number of heads and n is the number of coin flips.
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Posterior Prediction

Beta distribution Beta(a1,a2) Posterior (n coin flips, m heads)
(suppose a1, ap > 1)

Mean i m-+ aq
a1 + &o n+oa1+an
Mode
ag—1 m+uwg —1

X1 +ap —2 n+ag+ap—2
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Parameter Estimation
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Point Estimates

A point estimate of a model parameter is a statistic.

or sample statistic is any quantity computed from values in a

A statistic...
[Source: Wikipedia]

sample which is considered for a statistical purpose.

We have seen a few examples of point estimates: MLE, RFE,
posterior mean, and posterior mode.
All of them discarded the information from the curve of P(0 | Y, ).

Both distributions have mean 0.5,

5 /N —— Beta(3, 3)
. j A\l Betal20.20) but do they contain the same infor-
[ mation?
3 o
g } Curve shape captures uncertainty

about parameters.

Credible intervals (Bayesian) and
confidence intervals (frequentist)
I quantify this uncertainty.
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Summary

Bayesian Credible Intervals

PO |Y, )< P(Y|0)P( |
A (1 — «) Bayesian credible interval (Cl) on parameter 6 is an
interval containing (1 — «) of the posterior probability mass.
w: significance level. % :a = 0.05, %* : a = 0.01, * %% : a = 0.001.

Two common standards for Bayesian Cl construction:

Highest Posterior Density Symmetric
5 —— Beta(4, 18) 5 —— Beta(4, 18)
95% HDI 95% ClI
4 -=-- HDI Cutoff 4
=3 _3
) )
3 3
2 2
1 ] 1 2.5% probability mass
0 / 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

2} 6
Multivariate generalization: interval — region.
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Monte Carlo Methods
The posterior distribution P(0 | Y, I) &< P(Y | 8)P(6 | I) could be
too complex to compute analytically.

To determine the credible interval, we can simulate the posterior
distribution using Monte Carlo methods.

n =7+ b= 9400

Generally speaking, we

® Define a domain of possible inputs

® Generate ni.i.d. random inputs from a
probability distribution over the domain
Perform a computation on each randomly
generated input

Aggregate the results

[Source: Wikipedia]


https://en.wikipedia.org/wiki/Monte_Carlo_method

Confidence Intervals & Credible Intervals
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Monte Carlo Methods: Our Case

PO |Y, )< P(Y|O)PO |

® We can't sample from P(6 | Y, /) directly.

® We can't calculate pdf(@ | Y, l), nor compute its integral (i.e., the
cumulative distribution function, CDF); therefore, we can't directly
calculate the credible interval.

® For any desirable 6, we can compute P(Y | 0)P(6 | I).

® We can sample from Z/I(O, 1), or any uniform distribution.

Suppose we know u = maxg P(Y' | 0)P(6 | 1), or simply use a large

enough u. Repeating the following process approximates sampling

from P(6 | Y, 1):

® Draw 0" ~ U(I,r), where | and r are the bounds of the domain of 6.

® Draw v ~U(0, u).

o If / < P(Y|6)P(0'| 1), collect 6; otherwise discard it (rejection
sampling).
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Example: Monte Carlo with Rejection Sampling
PO|Y, )< P(Y|O)PO|),PY|0)=0*1-0)>2P06|)=1

For reference, we know that the posterior distribution is Beta(5, 3).

import seaborn as sns
import matplotlib.pyplot as plt

def monte_carlo(n_samples=1000, n_heads=4, n_tails=2):

likelihood = lambda theta: theta ** n_heads * (1 - theta) ** n_tails
sampled_thetas = []
while len(sampled_thetas) < n_samples:

theta = np.random.uniform(0, 1)

u = np.random.uniform(0, 1)

if u < likelihood(theta):

sampled_thetas.append(theta)

sns.histplot(sampled_thetas, bins=50, stat='density')
plt.savefig(f 'monte-carlo-{n_samples}.pdf', bbox_inches='tight')

np.random.seed(42) # for reproducibility
monte_carlo(1000), monte_carlo(10000), monte_carlo(100000)

Note: a few imports are omitted for brevity.



Parameter Estimation Confidence Intervals & Credible Intervals Hypothesis Testing Linear Regression Summary
0000000 00000e0 00000000000 0000000 000

Example: Monte Carlo with Rejection Sampling

—— Betal(s, 3) 2.51 — Betal(s, 3) —— Beta(s, 3)

1,000 samples 10,000 samples 100,000 samples

Warning: rejection sampling could be very inefficient.

In practice, we use Markov Chain Monte Carlo (MCMC) with
advanced algorithms such as the Metropolis—Hastings algorithm.
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Frequentist Confidence Intervals

Key idea: for parameter 6, define a procedure for constructing an
interval ly from data y.

lg = Proc(y)

Suppose we repeat the procedure many times, each time collecting
data y and constructing ly = Proc(y).

If (1 —«) of these intervals contain the true parameter 6, then
Proc is a method for constructing a (1 — a) confidence interval.

For a normal distribution,

Sample Mean — u Degree of Freedom
e

Standard Error

Frequentist confidence interval = ji £ t,_1 - }

n
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Bayesian Hypothesis Testing

Hypothesis: a candidate theory/model for the generative process
by which data y come into the world.

Bayesian inference provides a simple toolkit to compare two
hypotheses { H;}.

P(H; | y) < P(y | H;) P(H;)

Posterior odds Likehood ratio Prior odds
—— ———
P(Hly) _ Ply|H) P(H)
P(H|y)  P(ylH) P(H)

We use the likelihood ratio as the Bayes factor.

Compared to the posterior odds, the Bayes factor is more robust to
the choice of prior.
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Empirical Interpretation of Bayes Factors

logg K K Strength of evidence

Otol 1to32

Not worth more than a bare mention
Ftol 32to10

Substantial
1to2 10 to 100 Strong
> 2 > 100 Decisive

[Kass and Raftery, 1995; Table source: Wikipedia]

Summary
000


https://en.wikipedia.org/wiki/Bayes_factor
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Example: Bayesian Hypothesis Testing

Coin is fair

Hy o PO | Hy) = 1 6 =05
L v 0 otherwise

Hy:p(0| H) =1 0<6<1 Coin is not fair*

Data: y=10,1,1,0,1,1]

Py = (1)

Ply| o) = [ 602

Summary
000
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Power Analysis

For certain data, we have

Ho is | Accept Hg Reject Hy

True | Correct (prob. 1 —a)  Type | error (prob. «)
False | Type Il error (prob. B) Correct (prob. 1 — B)

«: significance level. 1 — B: power.

In a statistical test, we typically control «, which sets up a
threshold for decision making, and compute 1 — B.

A 1 — B of 0.8 is generally considered good.
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Example: Power Analysis

We are interested in whether the average grade of the class is
indifferent from 50. Based on the grades of 25 students with
sample standard deviation of 10, we decided to reject Hy if the
average grade is greater than 55.

What is the significance level a?

Suppose the true population mean is 56. What is the power 1 — 37

0.20

N(50,2)

0.15
X010
Q

0.05

0.00

0.20  N(50.2)
N(56,2)
0.15
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Frequentist Hypothesis Testing

The Neyman—Pearson paradigm: formulate two hypotheses
about the generative process underlying the data.

® Null hypothesis Hy.

® Alternative hypothesis Hy within which Hp is nested.

Define a rejection region R such that if T(y) € R, we reject Hop.

Reject Accept Reject
< } % i >

Choose a test statistic T(y) that is a function of the data.

Collect data, compute T(y), and compare it to the rejection
region.
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The Gaussian (or Normal) Distribution

—— WN(100, 15)

0.025 1

0.020+

0.015

p(x)

0.010+

0.0051

0.000

Summary
000
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The t-Test: Three Variants

® One-sample (Student’s) t-test: Does the underline
population mean of a sample differ from zero?

® Two-sample t-test (unpaired): Do the underlying
population means of two independent samples differ?

® Two-sample t-test (paired): You have a sample of
individuals from the population and take ‘
measurements from each member of the sample in William Sealy
two different conditions. Do the underlying population Gosset, a.k.a.
means in the two conditions differ? Student

~
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One-Sample t-Test

Null hypothesis Hp: the mean of the normally-distributed
population underlying that a sample comes from is u = 0.

Alternative hypothesis Hy: 1 # 0 (two tails; generally preferred) or
# > 0 (one-tailed; less common).

Test statistic:

. X
= 75/\/5

t

Compare t to the t-distribution with n — 1 degrees of freedom:
Reject Ho if [t| > tp_11_a/2.
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Two-sample t-Test (Unpaired)
Assumptions: two samples are i.i.d. normal.
Null hypothesis Ho: p1 = po.

Alternative hypothesis Hyi: p1 # po (two-tailed); p1 > po
(one-tailed).

If we assume that the two underlying populations have equal
variance (Student’s t-test), the test statistic is

1 — X —1)s? —1)s3
P X1 — X2 where s, = (m ) 1+(”2 ) 2
spV/1/n+1/no ni+ny—2

If we do not assume that the two underlying populations have
equal variance, we use the Welch's t-test.

X1 — X2

\/ S/ i+ 3/

t=

Summary
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Paired Two-Sample t-Test

Assumptions:

® |n a sample of units from a population, for each unit, we have two
measurements (xj, x2) on the same scale.

® The difference between measurements is i.i.d. normal.

® (Sufficient condition: paired measurements are bivariate normal).

Null hypothesis Hop: p1 = po.

Alternative hypothesis Hy: pu1 # po (two-tailed); p1 > po
(one-tailed).

Strategy: compute the difference d; = x1; — xp; for each unit, and
apply the one-sample t-test to the differences.
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Linear Regression

We often want a parameterized form to draw inferences about

conditional distributions P(Y | X1, ..., Xp).

Questions we might ask:

® |s there evidence that each X; predicts Y above and beyond the
predictive value of the other X;?

® Do X; and X; have “separate” influences on Y, or do they “interact” in
their influences on Y?

® What is the shape of the predictive relationship between Y and X;?

Predicted Mean Noise~ A (0, )

~~
Y= Bo +B1Xi+B2Xo+ ...+ BnXn+ €
—~—

“intercept”
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Parameter Estimation in Linear Regression

There are two major approaches (which are deeply related yet
different) in widespread use:

® The principle of maximum likelihood: pick parameter values that
maximizes the probability of data Y
Choose {Bi} and o that make the likelihood P(Y | {Bi},o) as large as
possible.
If we augment the X matrix with a column of 1s, the model turns into

Y= X3 +e¢.
The MLE estimate turns out to be
B=(X"X)"xTy

® Bayesian inference: put a probability distribution on the model
parameters and update it on the basis of the Bayesian rule.

P({Bi}, o | Y. X) < P(Y | {Bi}, 0, X) P({Bi}, o)

Likelihood Prior
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Frequentist Hypothesis Testing in Linear Regression

(B\i - .Bl)w ~ th-m-1,

S

where n is the sample size, m is the number of predictors, and s is
the residual standard error.

_ 1 ”( . A.)2
S= n—m—1 Yi— Vi

1=

-

Suppose the null hypothesis is Hp : B; = 0, then we will use the
t-statistic to test it.
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The Decomposition of Variance

Beautiful property of linear models: we can decompose the
variance of the dependent variable into two parts.

Var(Y) =Y. (s~ 7)
=Y G-+ - )

Jj

/

Vary(Y) unexplained

Key idea for proof:

Y 0i—9 (- =0« d -
7 —— Y xi(y;=%) =0
residual F

Exercise: complete the proof.
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Coefficient of Determination (R?)

For linear models,

@2 _q L9
1 (i — ¥)?

® R? js the proportion of the variance in the dependent variable that is
predictable from the independent variables.

® R?is a measure of the fit of the model.

® R? s always between 0 and 1.

Summary
000
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Interaction Terms

Usually in real practices, multiple predictors “interact” with each
other.

Sales =B + B1Advertising Cost + B2Store Size
Sales =B¢ + B1Advertising Cost + BStore Size+
+ B3Advertising Cost x Store Size

The interaction term B3Advertising Cost X Store Size captures the
effect of the interaction between the two predictors.

A significantly positive B3 indicates that more advertising cost is
more effective in larger stores.

Explain the interaction terms first when interpreting the results.
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Correlation vs. Causation

Reading Time ~ Height + Vocabulary Size

Randomly sample people of ages 3-70.

Result: ,BHeight < 0(***)1 ,BVocabulary Size < 0(***)
Q: Does this mean that taller people read in a faster speed?

A: Yes and no.

A more plausible explanation:
Reading Time ~ Vocabulary Size 4+ Age
Height ~ Age

To infer causation, we need to conduct a controlled experiment.

https://www.r-causal.org/


https://www.r-causal.org/

Summary
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What's Not Covered?

The )(2—test, measuring the difference between the observed and
expected frequencies of the outcomes of a set of variables.

" (0 - E)?
XZDOF = Z ( E: )
i=1 !

The F-test, comparing the variances of two samples.

st

Fre1,n—k = .
$

where n is the sample size, k is the number of predictors, and s%
and s3 are the variances of the two samples.
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When should we use frequentist vs. Bayesian methods?

Some philosophy of science:

Frequentist hypothesis testing generally gives much higher efficiency.
Frequentist hypothesis testing has an asymmetric treatment of the null
(Ho) and alternative (H1) hypotheses.

The p-value from a dataset D shows how unlikely the dataset was to
be produced under Hp.

In some senses, the alternative hypothesis is never actively used!
Bayesian hypothesis testing overcomes this asymmetric treatment by
directly comparing the two hypotheses.

However, we have to specify the prior anyway, which may significantly
affect the test results.
Additionally, it could be slow to compute the posterior distribution.
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Next

Morphology, tokenization
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