
1/31

Edit Distance Distributional (Lexical) Semantics

CS 784: Computational Linguistics
Lecture 5: Edit Distance and Distributional

(Lexical) Semantics

Freda Shi

School of Computer Science, University of Waterloo
fhs@uwaterloo.ca

January 23, 2025

2/31

Edit Distance Distributional (Lexical) Semantics

This Lecture

• Edit Distance
• Distributional (Lexical) Semantics

3/31

Edit Distance Distributional (Lexical) Semantics

Edit Distance: Problem Definition

• Definition: The edit distance between two strings is the minimum
cost of operations required to transform one string into the other.

• Operations:
• Insertion of a character
• Deletion of a character
• Substitution of a character

• Can be applied to real-life problems such as spell checking, DNA
sequence alignment, as well as linguistics-oriented tasks such as
morphological analysis.

4/31

Edit Distance Distributional (Lexical) Semantics

Example: Calculating Edit Distance

Example
Suppose the costs of insertion, deletion, and substitution are all 1.
Calculate the edit distance between the strings "kitten" and
"sitting".

Answer:
• Step 1: Substitute 'k' with 's' → "sitten"
• Step 2: Substitute 'e' with 'i' → "sittin"
• Step 3: Insert 'g' at the end → "sitting"

Edit Distance: 3

5/31

Edit Distance Distributional (Lexical) Semantics

Dynamic Programming Approach

• Problem: Given two strings X and Y and the constant cost of each
operation, find the minimum cost of operations to convert X to Y.

• Solution: Use a dynamic programming table D where D[i, j]
represents the edit distance between the first i characters of X and
the first j characters of Y.
Key idea of Dynamic Programming: Break down the problem into
smaller subproblems (in the same form) and solve them first.

• The Wagner and Fischer (1974) algorithm, which was also
independently discovered by many people:

D[i, j] =


max(i, j) if min(i, j) = 0, (edge cases)

min


D[i-1, j] + Costdel(X[i]),
D[i, j-1] + Costins(Y[j]),
D[i-1, j-1] + Costsub(X[i],Y[j])

o.w.

6/31

Edit Distance Distributional (Lexical) Semantics

Edit Distance between "kitten" and "sitting"

k i t t e n

s

i

t

t

i

n

g

1 2 3 4 5 6

7

6

5

4

3

2

1

0

D[i, j] = max(i, j)

7/31

Edit Distance Distributional (Lexical) Semantics

Edit Distance between "kitten" and "sitting"

k i t t e n

s

i

t

t

i

n

g

1 2 3 4 5 61

1

1

0

2 1

1

1 21 2 3 4 5

3 2 1 2 3 4

4 3 2 1 2 3

5 4 3 2 2 3

6 5 4 3 3 2

7 6 5 4 4 3

0 1 2 3 4 5 6

1

2

3

4

5

6

7

Cd = 1,Ci = 1
Cs = 1[x ̸= y]

D[i, j]

=min


D[i-1, j] + Cd,

D[i, j-1] + Ci,

D[i-1, j-1] + Cs

8/31

Edit Distance Distributional (Lexical) Semantics

Variants of Edit Distance

The Levenshtein distance:
• All equal cost (usually 1) for insertion, deletion, and substitution.
• Only insertion and deletion allowed (with cost 1), and no substitution.

Substitution is essentially a deletion followed by an insertion!
This is equivalent to the having insertion and deletion costs of 1, and
substitution cost of 2.

Longest Common Subsequence (LCS): find the longest (possibly
discontinuous) subsequence that is common to both strings.

LCS(kitten and sitting) → ittn

• Insertion and deletion cost 1, no substitution.
• ED(X,Y) = |X|+ |Y| − 2 × LCS(X,Y)

9/31

Edit Distance Distributional (Lexical) Semantics

Digital Representations

How does a computer see and read?
Everything needs to be represented in a digital form (or more
specifically, binary sequences).
Computers never work with “raw” text.
• Tokenization: breaking text into tokens, which are represented by

indexes.
These indices do not capture meanings of words.

inter (3849) vs. interface (50256)
• Vector representations: represent tokens/words as vectors in a

high-dimensional space, and use vector similarity as a proxy for
semantic similarity.

10/31

Edit Distance Distributional (Lexical) Semantics

Word Vectors

Until the 2010s, in NLP, words meant atomic symbols.
Nowadays, in NLP and many CL tasks, words are represented as
vectors.
Key idea: Similar words are nearby in the vector space.
These vectors are also called word embeddings.
Word vectors offer a way for account for the variability of natural
language: if multiple forms are similar in meaning, their vectors
should be close in the vector space.

really : [2.1 −7.9 8.4 −1.3]
reallly : [2.0 −6.1 7.8 −0.8]

rly : [1.8 −6.8 7.9 −1.0]

11/31

Edit Distance Distributional (Lexical) Semantics

How to represent a word?

One-hot representation: a binary vector with a 1 at the index of
the word and 0s elsewhere.

|V| can be very large!
If |V| = 50K,
then |V|2 = 2.5B

If stored in 32-bit floats,
it would take 10 GB of
memory!

12/31

Edit Distance Distributional (Lexical) Semantics

Word Representations

What is an ideal word representation?
It should (probably) capture information about usage and meaning:

• Part-of-speech tags (noun, verb, etc.)
• The intended sense
• Semantic similarities (e.g., winner vs. champion)
• Semantic relationships (antonyms, hypernyms, etc.)
• …

13/31

Edit Distance Distributional (Lexical) Semantics

Feature-Based Representation?

How many features should we design?
Are there features that we might miss?
Do some features weigh more than others?

14/31

Edit Distance Distributional (Lexical) Semantics

Distributional Semantics

The meaning of a word is its use in the language.
—Ludwig Wittgenstein (1943)

The use of a word is defined by its contexts
(i.e., the words that appear around it).

15/31

Edit Distance Distributional (Lexical) Semantics

Key Idea of Distributional Semantics
Consider this word: tezgüino, which appears in the following
sentences:
1. A bottle of tezgüino is on the table.
2. Everybody likes tezgüino.
3. Don’t have too much tezgüino before you drive.
4. Tezgüino is made out of corn.

What do you think tezgüino means?
skiing loud motor oil wine

Word 1 2 3 4
tezgüino 1 1 1 1
skiing 0 1 0 0
loud 0 0 0 0
motor oil 1 0 0 1
wine 1 1 1 0

16/31

Edit Distance Distributional (Lexical) Semantics

The Distributional Hypothesis in Linguistics

The meaning of a word is its use in the language.
—Ludwig Wittgenstein (1943)

You shall know a word by the company it keeps.
—J.R. Firth (1957)

If A and B have almost identical environments we say that they
are synonymous.

—Zellig Harris (1954)

The distributional hypothesis: words with similar meaning are
used in similar contexts, and vice versa.
How to represent words based on their contexts?

17/31

Edit Distance Distributional (Lexical) Semantics

Co-Occurrence
Let C ∈ Z

|V|×|V|
+ denote the co-occurrence matrix of a corpus.

V is the vocabulary.
Cij is the number of times word j appears in the context of word i.

We will need to define a context window size w: if two word tokens
are within w tokens of each other, they are considered to be in
each other’s context.
Use Ci as the word vector for word vi(vi ∈ |V|), and use
dot-product or cosine similarity to measure word similarity.

dot-product(α,β) = α · β = ⟨α,β⟩ = αTβ = ∑
i

αiβi

cosine(α,β) =
αTβ

∥α∥∥β∥ =
∑i αiβi√

∑i α2
i

√
∑i β2

i
Any issues?

18/31

Edit Distance Distributional (Lexical) Semantics

Issues with the Co-Occurrence Matrix

• It’s very large: |V|2 entries.
Solution: Use a small set of words as the context—make
C ∈ Z

|V|×|C|
+ , where |C| ≪ |V|.

• Some common words (e.g., the, a, of) will have high counts with
many words, dominating the similarity calculation, but they may not
be very informative.
Solution: Exclude them from the context vocabulary (stop words).

Or use better quantities to substitute the raw counts (options
below)!

19/31

Edit Distance Distributional (Lexical) Semantics

TF-IDF
Before getting into word vectors, let’s talk about a common
technique used to represent document in conventional information
retrieval.
• Term Frequency tf(d,w) :number of times a word w appears in a

document d.
• Inverse Document Frequency (IDF) idf(w): inverse of the number

of documents that contain the term

idf(w) = log
N

Nw
N :total number of documents

Nw :number of documents containing word w

• TF-IDF: the product of TF and IDF.

tf-idf(d,w) = tf(d,w)× idf(w)

20/31

Edit Distance Distributional (Lexical) Semantics

Alternative 1 of Co-Occurence: (PMI)
Recall: The mutual information between variables X and Y is

I(X;Y) = ∑
x∈X

∑
y∈Y

P(x, y) log P(x, y)
P(x)P(y)

Pointwise mutual information (PMI; Fano, 1961) measures the
association between two words wi and wj by

PMI(wi,wj) = log
P(wi,wj)

P(wi)P(wj)
= log

P(wi|wj)

P(wi)
= log

P(wj|wi)

P(wj)

P(wi,wj): probability of observing wi and wj together.
P(wi) and P(wj): probabilities of observing wi and wj independently.
PMI is a measure of how much more likely the two words co-occur
than if they were independent.

21/31

Edit Distance Distributional (Lexical) Semantics

PMI: Implementation

Using frequentist estimation of probability:

P(wi,wj) ≈
Cij
ℓC P(wi) =

Ci
C P(wj) =

Cj
C

ℓ: context window length.
Ci,Cj: word token counts of wi and wj.
Cij: co-occurrence count of wi (left) and wj (right).
C: total word token count.

PMI(wi,wj) = log
P(wi,wj)

P(wi)P(wj)
= log

Cij · C2

Ci · Cj · ℓ(C − 1)

≈ log
Cij · C
Ci · ℓ

22/31

Edit Distance Distributional (Lexical) Semantics

PMI with Laplace Smoothing

PMI(wi,wj) ≈ log
Cij · C
Ci · ℓ

If we enumerate all possible word pairs, we will have many Cij = 0
in the co-occurrence matrix, which makes the above formula
ill-defined.
Solution: Laplace smoothing—add a small constant α (usually
α ∈ [0.1, 3]) to all counts.

P(wi,wj) ≈
Cij + α

ℓC + α|V|2

23/31

Edit Distance Distributional (Lexical) Semantics

Highest PMI Pairs on Wikipedia Oct 2015 Dump

wi wj Ci Cj Cij PMIe(wi,wj)

puerto rico 1938 1311 1159 10.03
hong kong 2438 2694 2205 9.73
los angeles 3501 2808 2791 9.56
carbon dioxide 4265 1353 1032 9.10
prize laureate 5131 1676 1210 8.86
san francisco 5237 2477 1779 8.83
nobel prize 4098 5131 2498 8.69
ice hockey 5607 3002 1933 8.66
star trek 8264 1594 1489 8.64
car driver 5578 2749 1384 8.41

[Source: Wikipedia]

24/31

Edit Distance Distributional (Lexical) Semantics

Lowest PMI Pairs on Wikipedia Oct 2015 Dump

wi wj Ci Cj Cij PMIe(wi,wj)

it the 283891 3293296 3347 -1.72
are of 234458 1761436 1019 -2.09
this the 199882 3293296 1211 -2.39
is of 565679 1761436 1562 -2.55
and of 1375396 1761436 2949 -2.80
a and 984442 1375396 1457 -2.92
in and 1187652 1375396 1537 -3.06
to and 1025659 1375396 1286 -3.09
to in 1025659 1187652 1066 -3.13
of and 1761436 1375396 1190 -3.71

[Source: Wikipedia]

25/31

Edit Distance Distributional (Lexical) Semantics

Positive PMI

The PMI matrix still suffers from the large (|V|2) size.
Negative PMIs: how words are not related, which may not be very
informative to define context, especially when the absolute values
are close to 0.
Church and Hanks (1989) and others:

PPMI(wi,wj) = max (PMI(wi,wj), 0)

Enables a range of algorithms that requires sparsity!
Before word2vec (Mikolov et al., 2013), SVD of the PPMI matrix
was a popular method to obtain word vectors.
See an example of PPMI word vectors and its application here:
[Turney et al. EMNLP 2011]

https://aclanthology.org/D11-1063.pdf

26/31

Edit Distance Distributional (Lexical) Semantics

Alternative 2 of Co-Occurence: Neural Word Vectors

Recall the distributional hypothesis: words with similar meanings
are used in similar contexts.
Translate to neural network approach: word embeddings for a word
should be learned (from random initialization) such that they can
well-predict (or can be well-predicted by) the surrounding words in
the context.
Trainable parameters Θ = W ∈ R|V|×d: word vectors.
d: dimensionality of the word vectors.

27/31

Edit Distance Distributional (Lexical) Semantics

Word2Vec (Mikolov et al., 2013)

Continuous bags of words (CBOW): predict the target word
from the context words, or predict one from many.

wt−2 wt−1 wt wt+1 wt+2

W∗ = max
W

Ewt∼Pop [PW(wt|wt−ℓ, . . . ,wt−1,wt+1, . . . ,wt+ℓ)]

= max
W

Ewt

[
exp (wt · avg(wt−ℓ, . . . ,wt−1,wt+1, . . . ,wt+ℓ))

∑v∈V exp (wv · avg(wt−ℓ, . . . ,wt−1,wt+1, . . . ,wt+ℓ))

]
Pop: the population distribution of words in the corpus.

This formulation of exp(·)
∑ exp(·) is called the softmax function.

28/31

Edit Distance Distributional (Lexical) Semantics

Word2Vec (Mikolov et al., 2013)
Skip-gram (SG): predict the context words from the target word,
or predict one from one, by learning to distinguish between true
pair ⟨w, c⟩ and negative samples ⟨w, v⟩.

wt−2 wt−1 wt wt+1 wt+2

W∗ = max
W

Ewt,wc,wv∈Pop
[
logP(⟨wt,wc⟩+) + logP(⟨wt,wv⟩−)

]
P(⟨wt,wc⟩+) = σ(wt · wc)

P(⟨wt,wv⟩−) = σ(−wt · wv)

σ(x) = 1
1 + exp(−x) is the sigmoid function.

Empirically, each positive pair is coupled with K negative samples.

29/31

Edit Distance Distributional (Lexical) Semantics

Lightweight Libraries/Resources for Word2Vec

• GenSim (For training word vectors from your corpus)
https://radimrehurek.com/gensim/models/word2vec.html

• Glove (Pennington et al., 2014)
https://nlp.stanford.edu/projects/glove/

• FastText (Bojanowski et al., 2017; for a state-of-the-art word
embeddings with awareness of subword information)
https://fasttext.cc/

• The 0-th layer of pretrained language models such as BERT (Devlin et
al., 2019) and GPT-2 (Radford et al., 2019).

https://radimrehurek.com/gensim/models/word2vec.html
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/

30/31

Edit Distance Distributional (Lexical) Semantics

Questions

Think about the following questions:
• What are the possible issues of neural word2vec models?

For example, are there linguistic features that cannot be captured by
the model?

• Do the issues exist with subword tokenization?

31/31

Edit Distance Distributional (Lexical) Semantics

Next

Dataset and Data Curation
P.S. A random picture (distantly) relevant to this lecture

Ludwig the Cat

	Edit Distance
	Distributional (Lexical) Semantics

