Optimization Basics: MLPs MLP Classifier
00000 0000000000000 00 0000000000

CS 784: Computational Linguistics
Lecture 8: Neural Networks |
(for Text Classification)

Freda Shi

School of Computer Science, University of Waterloo
fhs@uwaterloo.ca

January 30, 2025

Check out https://pytorch.org/tutorials/intermediate/nlp_
from_scratch_index.html if you aren't familiar with this topic!

https://pytorch.org/tutorials/intermediate/nlp_from_scratch_index.html
https://pytorch.org/tutorials/intermediate/nlp_from_scratch_index.html

ization

Recap: A Unified View of Classification

classify(s) = arg maxscore(s, y, ®)
y

s: input text, y: class label, @: model parameters.
Modeling: define score(s, y, ©).
Training: learn ® to maximize the likelihood of the training data.

Inference: find the best class label y for a given input text s.

This lecture and the next: score(-) with artificial neural networks.

Optimization Basics: MLPs

Overview of This Lecture (and the Next)

Basics: Optimization

Basics: Perceptrons and multi-layer perceptrons (MLPs)
Convolutional neural networks (CNNs)

Recurrent and recursive neural networks (RNNs/RvNNs)
Attention

Transformers

Optimization Basics: MLPs MLP Classifier
@0000 0000000000000 00 0000000000

Recall: Logistic Regression with Gradient Descent

arg min loss (w; D= {Xiy}/i},{i1>
w

For logistic regression,

Ioss(w D) Zy, log o (WTX:) (1—)/i> log (1 - ‘T(WTXI'))
1
o(x) = T+ exp(—x)

Gradient descent: update w in the opposite direction of the
gradient of the loss function, i.e., w < w — yVyloss(w; D).

dloss(w; D) dloss(w; D)

Vwloss(w; D) =

ow,,

Optimization
0e000

Applying the Chain Rule

N
loss(w; D) =) _ yilog o (W) + (1 — y;) log (1 — o(w'x;))
i1
Let zi(w;x;) = w'x; = ¥ wixij.

loss(w; D) = loss(z;y) = ﬁy,- log o(z) + (1 — yj) log (1 — o (z))

Apply the chain rule:

dloss N dloss 9z

wj H 9z ow;

D;: the dataset that only consists of the i-th training example.

00000 500000000000000

Optimization Basics: MLPs

Stochastic Gradient Descent

w < w — 1V loss(w; D)

N
Vwloss(w; D) =)} Vyloss(w; D;)
i=1

Efficiency concerns: for each single update, we need to compute
the gradient over the entire dataset.

Solution (stochastic gradient descent): use gradients computed
over a small subset (also referred to as mini-batch) of examples.

=

Mo

Vwloss(w; D) ~ e Vwloss(w; D;)

I

Il
—_

Optimization
000e0

Stochastic Gradient Descent: The Idea

Consider we are estimating the gradient over the entire N examples.

The quantity we aim to estimate is:

N
Vwloss(w; D) = Y Vyloss(w; D))

i=1

= N-Ep,.pVwloss(w; D;)

The expectation can be estimated by sampling B(B << N)
examples from D:

B
Ep,~pVwloss(w; D;) Z wloss(w; D)

Optimization

[e]e]ee] }

Optimizing Neural Networks

Theoretically, gradient based optimization only guarantees
convergence to the global minimum for convex functions; for
non-convex functions, it may converge to a local minimum.

In (almost) every complicated real-world problems with neural
network models, the loss function is non-convex.

However, empirical evidence suggests that gradient-based
optimization works well in practice.

Adam (Kingma & Ba, 2015; momentum + adaptive learning rate)
and AdamW (Loshchilov & Hutter, 2019; Adam + automatic
weight decay) are popular choices now to optimize the loss
function of neural networks.

https://pytorch.org/docs/stable/optim.html#algorithms

https://pytorch.org/docs/stable/optim.html#algorithms

Optimization Basics: MLPs MLP Classifier
00000 900000000000 000 0000000000

From Biological Neurons to Artificial Neurons

Dendrite

Axon Terminal

hy
| / Node of X / \
\ Ay Ranvier (A, 1
D ha 1
R X2
Schwann cell o
Myelin sheath h3 y2
Nucleus X3 \ /
hy

[Source: Wikipedia]

First computational model of a neuron (McCulloch & Pitts, 1943):

0 otherwise

g(X)Zix; y:fe(x):{l if g(x) >0

x: input vector, 6: threshold.

https://en.wikipedia.org/wiki/Neuron

Optimization Basics: MLPs

0O@0000000000000

What is an artificial neural network?

An artificial neural network (ANN) is a function.

In machine learning context, the term neural network refers to
artificial neural networks.

Two (not necessarily exclusive) views:

® View 1 (computer scientists): The idea of neural modeling is now
better thought of as dense representation learning, although the
design of ANNs was inspired by biological neurons.

® View 2 (neural scientists): The design of ANNs was inspired by
biological neurons, so the study of biological neurons may draw
insights from artificial neural network behaviors.

mization Basics: MLPs
00 00e000000000000

Notations

u, v: vectors

uj, vi: entry i in the vector

W: a matrix

Wij: entry (i,) in the matrix

(Future lectures) V: a structured object (e.g., a sequence, a tree, etc.)
(Future lectures) y;: entry i in the structured object

Optimization Basics: MLPs
00000 000e00000000000

Perceptron (Minsky & Papert, 1969)

1 ifz>0

Perceptron(x; w, b) = step(w'x 4 b), step(z) = {
0 ow.

Can be written as step(wa) if one entry of x is always constant.

Constant X0 ——» Wp

Weighted

Sum

Xl —» W
Yy —» step

Xpn—1 —»Wp-1

W

Xn ——» Wp

Basics: MLPs
0000®0000000000

Learning Perceptrons

perceptron(x) = step(w'x)

For each training example (x;, y;):

Predict the label : Yi = perceptron(x;)
Update the weights : w=w+7(yi—yi)x;

1. learning rate, y;: ground-truth label, y;: predicted label.

® A perceptron is a binary classifier.

® w: weights that define canonical positive class,
and —w is the canonical negative class.

® [f the prediction is incorrect, adjust w.

ization Basics: MLPs
o 0000080000000 00

Perceptron Update as Stochastic Gradient Descent
y; = perceptron(x;) = step(wx;)
w = w1 (yi = ¥i) Xi
If we set the loss function for example i as
loss(w; x;, yi) = (Vi — yi) w'x;

and view y; as a constant, then the perceptron update rule is
equivalent to stochastic gradient descent on the loss function.

Vi yi loss(w;xi, y;)
0 O 0
1 1 0
0 1 +
1 0 +

Basics: MLPs
000000®00000000

Neural Layer: Generalized Perceptron

From a machine-learning perspective,
a neural layer = affine transformation 4+ nonlinearity.

perceptron(x) = step(w’x + b) € {0,1}

neural-layer(x) = g(Wx + b) € R%u
neural-layer(x); = g(wx + b;) € R

g: (nonlinear) activation function.
W € Rn*dout | & R%ut: parameter of the affine transformation.
w;: i-th row vector of W.

din: input dimension, doyt: output dimension.

Optimization Basics: MLPs MLP Classifier
00000 0000000e0000000 0000000000

Stacking Neural Layers

N
N
-
=
Il

g (WOx+b)
g(w<1>z<1> n b(l)) -2 X0

® Use the output of one layer as the
input of the next layer.

® Feed-Forward Neural Network
® Fully Connected Neural Network
® Multi-Layer Perceptron (MLP)

Basics: MLPs
000000008000000

Nonlinearities: Activation Functions

A g (Wm)x n b<o>>

® gis applied to each entry of the vector in an element-wise manner.
® Common activation functions: sigmoid, tanh, ReLU, Leaky Rel U, etc.

Why do we need nonlinearity?
Without nonlinearity, the composition of multiple layers of affine
transformations is still an affine transformation.

See also the Pytorch documentation.

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Optimization Basics: MLPs MLP Classifier
00000 000000000 e00000 0000000000

Activation Function: Tanh

e —e X
tanh(x) = ———
e+ e
1.0
0.5+
X
£ 0.0
S
—0.51
—1.01

Optimization Basics: MLPs MLP Classifier
00000 000000000 0e0000 0000000000

Activation Function: Sigmoid

. . 1
SIngId <X) = m

1.0

0.8 1

0.6

0.4

0.2+

0.0+

Basics: MLPs
00000000000e000

Tanh and Sigmoid

e —e %
e+ e X
1—e 2

= 1T e divide by e*onbothsides

1 B e72x
1+e2x 14 e 2x
=0(2x) — (1 —(2x))

= 20(2x) — 1

tanh(x) =

The derivatives of both tanh and sigmoid can be expressed in
terms of the function itself.

d
g{tanh(x) =1 — tanh?(x)

9 o) = o)1~ 0(x)

Optimization Basics: MLPs MLP Classifier
00000 000000000000 e00 0000000000

Activation Function: Rectified Linear Unit (ReLU)

ReLU(x) = max(0, x)

Optimization Basics: MLPs ML!
00000 0000000000000 e0 o]

The Dying ReLU Problem

RelLU was once the most popular activation function in deep
learning.

However, it can be fragile during training.

Due to problematic weight initialization, or imbalanced data,
the input of a ReLU unit can become negative for all training
examples.

These neurons will never activate again.

Solution: Leaky ReLU, Parametric ReLU, GELU, SELU, etc.

P Classifier

Optimization Basics: MLPs MLP Classifier
00000 0000000000000 0e 0000000000

Leaky RelLU

if 0
LeakyReLU(x) = X x> _
ax(a < 1) otherwise
6<
S 51

LeakyReLU(x) with a
N

MLP Classifier
000000000

Text Classification with MLP
A 2-layer MLP is a simple and general text classification model:

A g (w<°>x + b<o>>

x: text features, s € RI: score(x, -).

We empirically do not add nonlinear activation to the output
layer—we'll see the reason soon!
Remaining Questions:
® How can we obtain the text representation x?
Anyhow we can convert text into a fixed-dimensional vector.
® How do we train the model (update model parameters)?

By minimizing the objective function (e.g., cross-entropy loss) over the
training data, using gradient-based optimization methods.

Optimization Basics: MLPs MLP Classifier
0®00000000

The softmax Operator

The softmax operator converts a list of scores into probabilities:

softmax :RY — RY
Si
P(Y = y;) =softmax(s); = %
Z':l €’

softmax is a differentiable operator so that we can compute the
gradient of its output with respect to input.

In some tasks, particularly language model inference, softmax is
usually coupled with a temperature T.
eSi/T

softmax,(s); = W

When T — 0 (temperature annealing), softmax becomes argmax.

MLP Classifier
0O0@0000000

The softmax Operator

Many activation functions restrict the range of the output to some
narrow interval.

Some probability distributions can not be represented by softmax,
if passing the output of these functions to softmax.

Example:
s = tanh(a) € R?

softmax(s) cannot represent a distribution sharper than

e’l e

T T | = (012,088

This explains why we drop nonlinear activation for the output
layer.

MLP Classifier
000e000000

Softmax vs. Sigmoid

Softmax is a generalization of sigmoid to multiple classes.

o (x) gives the distribution

1 e | e e
l+ex 1+ex| |f4ex d+ex

= softmax([0, —x])

Logistic regression can be considered as a single-layer neural
network with sigmoid activation for 2-way classification.

MLP Classifier
0000800000

Training Objective: The Cross-Entropy Loss

Recall the cross-entropy loss between the population distribution
Pop(- | x) and the predicted distribution P(- | x):

~

H(Pop, P) = Ex,y~pop |~ log P(y | x)|
In practice, we estimate H(Pop, f’) using the training data, with
the assumption that they are i.i.d. samples from the population
distribution.
For single-label classification, the cross-entropy loss then becomes
the negative log-likelihood loss:

loss(x;, yi) = — log P(yi | x;) = — log softmax(s(x)),,

MLP Classifier
0000080000

Training Neural Classifiers

Assume x; is a text feature vector (obtained by bag-of-words over
pretrained word embeddings).

For a mini-batch of examples {(x;, y:)}2 ,:
® Compute the scores s = NNg(x;) and loss(x;, y;) for each example.
® Compute the average loss over the mini-batch.

® Compute the gradient of the average loss with respect to the model
parameters ® — using back propagation.

Update the model parameters using the gradients.

MLP Classifier
0000008000

Back Propagation

2V = g (Wm)x n b(o>>

loss(x, y) = — log softmax(s),

The gradient for the parameters W(O), b(o), W(l), b can be
computed using the chain rule.

dloss dloss ds dloss dloss Js dloss dloss ds
oW@) 9s gw@ 9b(1) 9s a9b() 9z() 9s 9z(1)
dloss dloss ds 9z(1) dloss dloss ds 0z(1)

ow(©) 9s 9z(1) gw(0) ob(® — 9s 9z(1) 9p(0)

SGD and advanced optimizers can be applied as long as the
gradients are computable!

MLP Classifier
0O000000e00

Some Philosophy: KL Divergence in Classification

[Source: David McAllester]

Recall: The Kullback-Leibler (KL) divergence serves as a natural
measurement of the difference between two distributions.

P(y)
Qy)

How many more bits are needed to encode samples from P using
the optimal code of Q, compared to the optimal code of P.

KL(P|| Q) = E,.plog

What we really aim to optimize is KL(Pop || P).

~ Po X
KL(Pop || P) = Ex ypoplog L 2PV 1 %)
P(y | x)

However, we don't have a good estimation of Pop(y | x) due to
lack of data.

()pLumz ation Basics: MLPs MLP Classifier

77777 0000000000

Some Philosophy: KL Divergence vs. Cross Entropy

Pop(y | x)

P(y| %)

— H(Pop, P) — H(Pop)

KL(Pop || P) =y, pop log —

H(POP, 75) = IE:x,yNPop - |0g 75()/ ’ X)

Although the optlmal P are the same, we can use the training data
to estimate H(Pop, P), but not KL(Pop || P).

We are never simply interested in minimizing the cross-entropy loss
between the training data distribution and the model predictions.

We are interested in doing so because training data is the only
information we have about the population distribution.

Optimization Basics: MLPs MLP Classifier
00000 0000000000000 00 O00000000e

Next

Advanced neural network architectures.

	Optimization
	Basics: MLPs
	MLP Classifier

