CNNs RNNs and RvNNs Transformers
0000000 0000000000 0000000000000

CS 784: Computational Linguistics
Lecture 9: Neural Networks |l
(for Text Classification)

Freda Shi

School of Computer Science, University of Waterloo
fhs@uwaterloo.ca

February 5, 2025

Check out https://pytorch.org/tutorials/intermediate/nlp_
from_scratch_index.html if you aren't familiar with this topic!

https://pytorch.org/tutorials/intermediate/nlp_from_scratch_index.html
https://pytorch.org/tutorials/intermediate/nlp_from_scratch_index.html

Recap: Unified View of Text Classification

classify(s) = arg max score(s, y, ©®)
y

s: input text, y: class label, @: model parameters.

Model score(s, y; ®) using a neural network.

Last lecture: represent s as a fixed-dimensional vector x using
bag-of-word embeddings.

This lecture: extract more powerful features x of s using advanced
neural network architectures.

CNNs RNNs and RvNNs Transformers
90000000 0000000000 0000000000000

Convolutional Neural Networks

Cs S, c
feature maps ~ feature maps Iayg . Fg
16@10x10 16@5x5
c, @1ox @5x 120 IEgE Output
feature maps feature maps 10
ot 6@28x28 6@14x14
32x32
=
= Full Gaussian

Full

connection connection
Subsampling Convolutions Subsampling connection

Introduced in the context of computer vision, but also used for text
classification.

CNNs RNNs and RvNNs Transformers
0e00000 0000000000 0000000000000

The Convolutional Kernel

X1,5 | X25 | X35 | X45 | X55

X1,4 | X4 | X34 | Xa4 | 54 [\W € R2X2 | 014 024 | 034 | 044

X13 | X23 | X33 [X43 | X53 | ———p | 01,3 023 033 | 043

X1,2 | X22 | X32 | X342 | X52 01,2 | 022 | 932 | 042

X1,1 | X2,1 | X3,1 | X4,1 | X5,1 O1,1 | 021|931 | %41

0=X*W Xe&R™M™W e R 0 ¢ R x(m=t1)

0ij = Z ZX/+p 1,j+g-1° Wpgq

p=1q=1

® A kernel is a small matrix (e.g., 2 X 2) that slides over the input.
At each position, kernel computes element-wise multiplication and
sum of the input and kernel.

® (Outdated) convention: rotate the kernel by 180 degrees.

CNNs RNNs and RvNNs Transformers
00@0000 0000000000 0000000000000

Convolutional Neural Networks: Characteristics

X15 | X25 | X35 | X45 | X55

X14 | X4 | X34 | Xaa | X54 | \W € R2X2 | 014 024 | 034 [Oa4

X13 | X23 | X33 | X43 | X53 | ————Pp | 013 | 023 | 033 | 043

X1,2 | X2,2 | X32 | X4,2 | X52 012 | 022 | 932 | 042

X1,1 | X2,1 | 31 | Xa,1 | X51 011|021 | 931 | 941

® A convolutional kernel can be thought of as weighted sum over a local
region of the input.

® The weights are learnable from data to optimize for downstream task.

® Therefore, a learned kernel is a local feature extractor (e.g., color
patterns, edge with a specific shape).

CNNs RNNs and RvNNs Transformers
000e000 0000000000 0000000000000

From 2D to 1D: Text CNNs

wait [
for -
the g

video —1-....
and I
do [
n't -

rent I
it

n x k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

[Source: Kim, 2014]

® Input X € R"*9.

n: number of token, d: embedding dimension.
® Kernels € R"*9 (kernel size h << n).

Any thoughts on why the second dimension is always d?
® Output O € R("—h+1)x1,

h d
Oi = Z Z Xitj—1,k = Wj k

j=1 k=1

CNNs RNNs and RvNNs Transformer
0000800 0000000000 000

Obtaining Fixed Dimensional Output

For a convolutional kernel
0=X*W (€ Rh1x1)

The output dimension depends on the kernel size h and the input
sentence length n.

However, almost all classifiers require a fixed-dimensional input.
Solution: pooling — make the one with variable length fixed!

In this case, we will convert O € R("—h+1)

*1 to a single scalar.
pooling : R* — R

Stacking scalars from a fixed number of kernels yields a
fixed-dimensional feature vector.

CNNs HNNs md R\NNs Tr msffnm rs

ocooocc®0 = 0OOOOOOOCOCO 0c 00000000000

Pooling Mechanisms
pooling : R* — R
More generally, pooling removes one dimension from a tensor.

Consider the tensor O € R@*b*cxd 314 we would like to remove

the third (¢) dimension.
® Max pooling: take the maximum from the output of each kernel.

C
maxpool(0);;x = rp_él{(Ojjpk

® Mean pooling: take the average value from the output of each kernel.

meanpool(0 ,J, Z Oijpk

® Attention pooling: take a weighted average of the output of each

kernel.
(o}

attnpool(0);;x = Z apO;jp ks
p=1

where &, is a data-dependent weight (more on this later).

CNNs
000000e

CNNs as MLPs

The basic form of a 2-layer perceptron:

A g (me n b<1>>

22 = w®@z(1) 4 p(2)
The application of one kernel at one position can be expressed as
o = Wx,

where W € R (") s the kernel and x € R("*9*1 is the input.

This corresponds to the first layer without the bias term and
activation function—in fact, it is a linear transformation.

CNNs RNNs and RvNNs
0000000 ©000000000

Recurrent Neural Networks

Elman (1990), a computational psycholinguist, proposed the
simple recurrent neural network (RNN) architecture.

Key idea: apply the same transformation to tokens in time order.

h;=g(W [ht—l; Xt] +b)

RNNs and RvNNs
O@00000000

RNNs: Gradient Update

h; =g(Wlh1;x +b)

Suppose hr is passed to the classifier as the fixed-dimensional

feature vector.

: dloss oh; oh,
We can easily calculate oh o aS well as h, and & for each t.

dloss
What about S7?

dloss T dloss oh;
oW t; oh, oW
dloss dloss ohy g
oh; oh.; oh;

CNNs RNNs and RvNNs Transformers

000000000 0000000000000

An Important Issue of Simple RNNs

h; =g(Wlh—1;x +b)

Suppose hyr 1 = W [hy; xe1] + b = ah(a # 1).
What will happen if t goes to 4007

The norm of h; will either explode (if « > 1) or vanish (if « < 1)
as t increases.

This motivates the development of more advanced RNN
architectures.

RNNs and RvNNs
0O00e000000

The Long Short-Term Memory Networks (LSTMs)

Hochreiter & Schmidhuber (1997) proposed the LSTM
architecture to address the vanishing/exploding gradient problem.

Forget gate ft = 0 (Wg[hi_1;x¢] + by)
Input gate ir =0 (W;lhe—1; %] + b))
Cell ¢ = tanh (W¢ [he_1;x¢] + bc)
Update ¢:=fOct 1 +i: O
Output gate o =0 (W [he_1;x¢] + b,)
Hidden state h; = 0; ® tanh(c;)

©: element-wise multiplication.
Key idea: keep entries in & and h; in the range [—1,1].

CNNs RNNs and RvNNs Transformers

GRUs (Cho et al., 2014) can be viewed as simplified LSTMs from
a practical perspective.

Update gate z; =0 (W, [hs_1;x¢] + b,)
Reset gate ry =0 (W, [he_1;x;] + b,)
Update rule h; =(1—2z;) ® hy
+z; © tanh (Wp [r: © he_1;x¢] + bp)

Works well with fewer parameters and less computation.

RNNs and RvNNs
0O0000e0000

Theoretical Motivation vs. Practical Approaches

Even with LSTM and GRU architectures, RNNs usually require

gradient clipping to stabilize training.

® |f the Ly norm exceeds a threshold, scale down the gradients before
updating the parameters.

Even RNNs theoretically preserve information from the beginning
of the sequence, in practice, they are not very good at it.

Khandelwal et al. (2018). Sharp Nearby, Fuzzy Far Away: How
Neural Language Models Use Context.

Bidirectional modeling typically gives more powerful features.

To obtain the fixed-dimensional output as RNN features for
classification, we may use the hidden states at the last time step,
or pooling over all hidden states (Lin et al., 2017).

CNNs RNNs and RvNNs
0000000000

Pretrained RNNs

In earlier years, people pretrained RNNs on large corpora!
Peters et al. (2018). Deep contextualized word representations.
(Also known as ELMo; Embeddings from Language Models)

ELMo trains a bidirectional LSTM on a large corpus, and use the
hidden states as text features.

The hidden states are also referred to as contextualized word
embeddings.

RNNs and RvNNs
0O000000e00

Recursive Neural Networks
Generalized RNNs that support tree-structured computation graph.

h, = g(W [ht—l; Xt] + b)

Run constituency parser on sentence and construct vector
recursively (Socher et al., 2011 & 2013).

hs = g (W[x1; hg] + b)

° @ hy = g(W(x2; x3] + b)

We may use complicated cells (e.g., LSTMs) to compute h; (Zhu
et al., 2015, Tai et al. 2015).

RNNs and RvNNs
0000000080

From LSTMs to Tree LSTMs

fe = 0 (Wrlhe_1;x¢] + by) I, = o (W¢lhg; h/] +by)

ir =0 (W;[ht1;x: +b;) r, = 0o (W,lh;h]+b,)

¢ = tanh (W¢ [he_1;x¢] + b() €, = tanh (Wc[h; h,] +b.)
¢ =FfOc1+i:O& ch=lLoc+r,0c,+¢E,
0r = 0 (Wo [he—1;%¢] + bo) 0, =0 (Woslh;h/] +b,)
h; = o; ® tanh(c;) h, = 0, ® tanh(c,)

Recursive networks with left-branching trees shares a lot in
common with RNNs.

Syntactically meaningful parse trees are not necessary for good
representations: instead, size balanced trees work well for most

tasks (Shi et al., 2018).

RNNs and RvNNs
0O00000000e

RNNs and RvNNs as MLPs

All the gates in advanced RNN architectures are linear
transformations followed by an activation function.

Taking LSTMs as an example,

Forget gate fr = 0 (Wg[he_1;x¢] + by)
Input gate ir =0 (W;lhe1;x¢] + b))
Cell €& = tanh (Wc [he_1;x¢] + be)
Output gate o =0 (W [he—1; x¢] + bo)
Update ¢=fOc1+i:O&
Hidden state h; = o ® tanh(c;)

Gates are combined linearly to form intermediate results.

Transformers
©000000000000

Recap: Attention Pooling

Removing the third dimension of a tensor using a weighted average:
attnpool ,J K= Z lXp ij.pk

How do we compute the weights a7

exp(sp)
Yo-1 exp(sq)

ap = softmax(s), =

Sp = wTvp
where v, is the (stretched) vector of O s p«.
We may calculate s with more complicated neural architectures.

In (most) machine learning context, attention is just weighted
sum!

CNNs RNNs and RvNNs Transformers
0000000 0000000000 0®00000000000

The Transformer Architecture

Vaswani et al. (2017). Attention is All You Need.

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit™
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com uszQgoogle.com

Llion Jones™ Aidan N. Gomez* | Lukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* ¥
illia.polosukhin@gmail.com

Transformers
0080000000000

Transformers

Output
Probabilties

® Introduced for sequence-to-sequence tasks, but
could be more accessible understood as a
feature extractor.

e Key idea: every token has attention to every
other token.
In slightly more CS/math words, after passing
through one transformer layer, the
representation of one token should contain
information from all context tokens.

(shifted right)

For sentence with tokens w;, ..., w,, a transformer computes

E = Embedding(w;, ..., w,) € RéA*n

K=WE WecR>*% K € R%x"
Q=W,E W;cR®?4 Q¢ RE*"
V=WE W, cR®% VgRB"

Transformers
000®000000000

Transformer Encoder

E = Embedding(wj, ..., w,) € RAX"

K=WE W, R KgR®:*"
Q=W,E W,cR®>4 Qe RE*"
V=WE W, cR®% VegRB"

In database terms, K, Q, and V are motivated by the functions of
key, query, and value, respectively.
The next layer representations are given by

T
KQ) c IRd3><’7

Vo

E = Vsoftmax <

Transformers
0000800000000

Transformer Encoder: Variance Normalization

-
E = Vsoftmax <K Q> € RB*"
Vo

What is \/d> for?
Consider the dot product between vectors a and b: if each entry in

both vector is drawn from a distribution with zero mean and unit
variance, what happens if the dimensionality grows?

The variance of the dot product grows linearly with the
dimensionality.

Recall:
softmax ([1, —1]) = [0.88,0.12]

softmax ([10, —10]) ~ [1,2.0612 x 10~ 7]

The scaling factor 1/d> stabilizes the variance of the dot product.
See also Xavier initialization (Glorot & Bengio, 2010).

Transformers
00000@0000000

Position Encoding
E = Embedding(w;, ..., w,) € R%*"

K=WE WeR*>¥ KeR®"
Q=WE W,;eR®> QeR®>*"

V=WE W, R VegRH*"
This formulation isn't so different from weighted bag of words.

Key idea: add position encoding p to the input embeddings.

) i i
pi2j = sin <100002J/d1> Pi2j+1 = COs (lOOOOZJ/dl>
Despite the arbitrary choice of the constant 10,000, the theoretical

motivation is to make the add-é relation in position encoding
representable by a linear transformation.

Vé € N, dMgs.t.Vi, Pirs = Msp;

Now: learnable position encoding (Shaw et al., 2018, inter alia).

Transformers
0000008000000

Multi-Head Attention

E = Embedding(w;, ..., w,) € R%*"

K=WE WecR>*% K € R%x"
Q=W,E W,ecR®>%" QeR"*"
V=WE W, cR®% VRSB

The equation above is called one head of attention.

To capture different aspects of the input, we concatenate multiple
heads to form the feature.

Remember these heads should be initialized differently.

Transformers
0000000800000

Stacking Multiple Layers of Transformers

E = Embedding(wj, ..., w,) € R*"

K=WE W, R KgRE*"
Q=WE WgeR®» QeR®>*"
V=WE W, eR®% VeR>"

T
E = Vsoftmax (K Q) € RB*"
Vdo

The output of one transformer layer E is fed into the next layer as
the input E.

Transformers
00000000@0000

The Residual Connections in Transformers

After processing in each transformer compo-
nent, the output is added to the input.

Add & Norm

x < x+ F(x)

N>

Residual connection (He et al., 2016). Mo
De5|gr?ed for easier training in compute.r vision: -
there is always a component for the input to .. ——— —_
linearly contribute to the output. Encoding

Input
Another interpretation: the residual connec- | Embedding |
tion is the main flow of information, while

Inputs

other results are added to the main flow.

Transformers
0000000008000

Transformers as MLPs

E = Embedding(w;, ..., w,) € R%xn

K=W.E W, €]Rd2><d1 Forward

Q=W,E WgeR? N>
Multi-Head

V = WVE Wv c]Rd3><d1 Attention
At

- K'Q e x C— I

E = Vsoftmax € Re*" Positional

vV d2 Encoding D

Input
All above are generalized linear operations, @I
coupled with a some real MLP in each Trans- !

Inputs
former layer. P

Transformers
0000000000800

Caveat: Attention is Not Explanation

Suppose H € R"* is the final hidden state of a transformer.

If we calculate attention weights & on H, does it mean that the
model is attending to the corresponding tokens?
Not really. Token representation h; is affected by all other tokens.

Are there better way to extract the positions that the model
“thinks"” are important? Yes!

We have loss(x, y,y; ©)

dloss

00
dloss

ox

For optimizing the model, we compute

For input-based explanation, compute

Simonyan et al. 2013. Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps

Transformers
0000000000080

What's Not Covered (Much) in the Lecture

® |nitialization and normalization techniques for stabilizing
training.
https://pytorch.org/docs/stable/nn.init.html
Ba et al. (2016). Layer Normalization.

® Dropout (Srivastava et al., 2014): a simple regularization
technique that randomly sets some the input units (of a neural
layer) to zero at each update during training.
Remember to turn off dropout during evaluation!

https://pytorch.org/docs/stable/nn.init.html

CNNs RNNs and RvNNs Transformers
0000000 0000000000 000000000000

Next

Language Modeling

	CNNs
	RNNs and RvNNs
	Transformers

