Autoregressive Language Models Decoding from Autoregressive LMs
0000000000000 00000000

CS 784: Computational Linguistics
Lecture 10: Language Models

Freda Shi

School of Computer Science, University of Waterloo
fhs@uwaterloo.ca

February 24, 2025

Evaluation
000



Autoregressive Language Models Decoding from Autoregressive LMs Evaluation
0000000000000 00000000 [e]e]e}

Recap: Distributional Semantics

You shall know a word by the company it keeps.
—J. R. Firth, 1957

A bottle of tezgiiino is on the table.

Everybody likes tezgiiino.

Don’t have too much tezgiiino before you drive.
Tezgiiino is made out of corn.

A bottle of is on the table.
Everybody likes .
Don't have too much before you drive.

is made out of corn.

This is language modeling.



Autoregressive Language Models Decoding from Autoregressive LMs

Language Models
Language model: a probability distribution over strings in a
language.

P(x) = P(x1, x2, ..., XT)

P(The cat is cute.) = 0.00000004
P(I am hungry.) = 0.0000001
P(Dog the asd@sdf 11247!17) ~ 0
Language modeling: the task of estimating this string
distribution from data.

® Define a statistical model Pg(x) (x: string).
® Estimate the parameters ® from data (by maximizing likelihood).

N N
OFf =arg maxH Pg(x;) = arg max Z log Pg (x;)
0 i1 i=1

Evaluation



Language Modeling as a Foundational Task

Compared to classification, which is somewhat a task-specific
problem, language modeling is a more general task to be
integrated into many NLP tasks.

Assigning probabilities to token sequences helps
® Machine translation
P(turn the camera off) > P(put the camera out)
® Speech recognition
P(a tomato garden) > P(a tornado garden)
® Grammatical error correction
P(about fifteen minutes) > P(about fifteen minuets)



Autoregressive Language Models Decoding from Autoregressive LMs Evaluation
0000000000000 00000000 000

Language Models: Data Matters

N
*
O* = arg max Z log Pe (x;)
i=1
. JKROWLING,
Aoty Potte s
4 'wa s

Rom v

WIKIPEDIA

The Free Encyclopedia

Language models highly depend on their training data that define
the population distribution.



Autoregressive Language Models Decoding from Autoregressive LMs Evaluation
0000000000000 00000000 [e]e]e}

Language Modeling: From Word to Sequence Probability

Goal: compute the probability of a sequence of tokens.
P(x1.7) = P(x1, %2, ..., XT)
Related task: compute the probability of the next word.
P(x1|x1:7-1) = P(xT|x1, %2, - ., X7—1)

From a high-level modeling perspective,

® Autoregressive language models: compute P(x7|x1, X2, ..., X7-1).
® Masked language models: compute P(xx|x1, ..., Xk—1, Xkt+1.---)
with some tokens masked.

From a methodological perspective,

® Count-based language models: n-gram models.
® Neural language models: RNNs, LSTMs, Transformers.



Autoregressive Language Models Decoding from Autoregressive LMs Evaluation
©000000000000 00000000 000

Autoregressive Language Models

Recall the chain rule of probability:
P(A,B) = P(A)P(B | A)
P(A, B, C) = P(A)P(B| A)P(C| A, B)
Applying it to sequences of tokens:
P(Xl, XD, et XT)
:P(X]_)P(X2 | X1)P(X3 | X1, X2) e P(XT | X1, X2, ooty XT_]_)

An autoregressive language model computes the conditional
probability P(XT | X1, X2, v ,XT_]_).

Important detail: remember to model sequence length — a special
token (EOS) is necessary in probabilistic terms!



Autoregressive Language Models De
0000000000000

Modeling Length: The End-of-Sequence Token

from Autoregressive LMs Evaluation

A language model assigns probabilities to token sequences x at a
desired granularity (e.g., sentences, paragraphs, documents).

Given that granularity, x can be of any length.

To form a well-defined probability distribution, we need to have
Y P(x) =1.

Sequence length is modeled by including a special token (EQS).
P((EOS) | x) denotes the stop probability.

Instead of calculating P(x1, x2, ..., x7), we calculate
P(x1,x2, ..., xT, (E0S)) as the sequence probability.



Autoregressive Language Models

ing from Autoregressive LMs Evaluation
0O0@0000000000 . j B

Modeling Length: The End-of-Sequence Token

What if we don’t have the (EOS) token?

Recall our autoregressive language model calculates

P(X]_,Xz ..... XT) = P(Xl)P(XQ | Xl) . P(XT ’ X1, X2, .,y XT_1)

probability,€[0,1]

If there is no (EOS) token

P(x1,....,x7) = P(x1,...x7—1)P(xT | x1,...,x7-1)
< P(xq, ..., x7-1)

P(The cat is cute.) < P(The cat is)



Autoregressive Language Models
000@000000000

Modeling Length: The End-of-Sequence Token

What if we don’t have the (EOS) token?

Recall our autoregressive language model calculates

P(X]_,X2, . .,XT) = P(Xl)P(Xz ‘ Xl) e P(XT | X1, X2, ... ,XT_1)

probability,€[0,1]
If there is no (EOS) token
(length T=1) ZP(XLT) = Z P(x1) =

x1€V

(length T=2) Y P(x1.7) = Y Y P(x1)P(x | x1)

x1€VxeV

= Z P(x1) (Z P(x2 | X1)> =1

x1€V xpeV

V: vocabulary.



Autoregressive Language Models D Lodm Hom Autoregressive LMs

0O000@00000000 O0O00000C

Modeling Length: The End-of-Sequence Token

Evaluation

If we have the (EOS) token, the sum of sequence probability
becomes

ZP (E0S)) =1

Idea for proof: once you reach the (EOS) token after sampling x;. 7,
certain probability mass is taken away—Ilonger sequences that use
X1.7 share the remaining probability mass.

Practice: complete the proof.



Autoregressive Language Models Decoding from Autoregressive LMs Evaluation
00000@0000000 00000000 000

Modeling Length: The End-of-Sequence Token

P(meows, (EOS))
=P(meows) P({E0S) | meows)

Each edge represents a (con-
ditional) probability term af-
ter factorization.




Autoregressive Language Models Decoding from Autoregressive LMs Evaluation
000000@000000 00000000 000

N-Gram Language Models: The Markov Assumption

Q: Suppose we have a vocabulary size |V| = 50K, how many
sequences of length T can we have?

A: |V|T, which could be extremely large when T > 3.

Counting-based methods cannot efficiently model
the conditional probability P(x7 | x1, x2, ..., X7-1)
when n goes large.

P(The cat is cute.)
=P(The)P(cat | The)P(is| The cat)
P(cute | The cat is)P(. | The cat is cute)

The Markov assumption: the probability of a  [w
token only depends on the previous n — 1 tokens  [Andrey Markov]
(n << sequence length T).




Autoregressive Language Models Decoding from Autoregressive LMs Evaluation
0000000800000 00000000 000

N-Gram Language Models: The Markov Assumption

In other words, the Markov assumption assumes independence of
a token from distant history, conditioning on its close history.

P(X,' | X1, X2, ¢ ,X;_1) ~ P(X,' | Xi—n+1y Xi—n+2, - - .,X,'_1)

always n— 1 entries

We can estimate the conditional probability

P(x;i | Xi—n+1, Xi—n+2, - - -, Xi—1) by counting the occurrences of
n-grams:
p o COUht(X,'_,H_l,...,X,'_1,X,')
(Xf | Xf—n+lr cee XI—].) -

count(Xi—pt1, -+, Xi—1)



Autoregressive Language Models Decoding from Autoregressive LMs

Evaluation
0O0000000e0000 00000000

[e]e]e}

Common N-Gram Language Models
¢ Unigram language models (n=1):
P(x) = P(x1)P(x2) ... P(xT)
P(This is a cute cat) = P(This)P(is)P(a)P(cute) P(cat)

The Sentencepiece tokenizer (Kudo et al., 2018) uses this method
to model text probability.

Caveat: there is no way to have the (E0S) fix for unigram LMs.
¢ Bigram language models (n=2):

.
P(x) =P(x1) ;P(Xi | xi-1)

P(This is a cute cat) =P(This)P(is | This)P(a | is)P(cute| a)
P(cat | cute) P((E0S) | cat)

® N-Gram language models (n>2): similar to bigram models—should
be paired with sparse techniques to store the probabilities.



Autoregressive Language Models
0000000008000

Sample Sentences from Unigram and Bigram LMs

Both trained on financial news.

Model 1: Unigram LM
fifth an of futures the an incorporated a a the inflation most
dollars quarter in is mass thrift did eighty said hard 'm july
bullish that or limited the

Model 2: Bigram LM
texaco rose one in this issue is pursuing growth in a boiler house
said mr. gurria mexico s motion control proposal without
permission from five hundred fifty five yen outside new car
parking lot of the agreement reached this would be a record
november



Autoregressive Language Models Decoding from Autoregressive LMs Evaluation
0000000000800 00000000 000

Generating from a Language Model

Taking bigram LMs as an example,

e Generate the first word wy ~ P(wy).
e Generate the second word wy ~ P(wy | wy).

® Generate the third word ws ~ P(ws3 | wy, wp) = P(ws | wa).
L]

® Repeat until the (EOS) token is generated.

Recap: sampling from a distribution.

polyphonic
however P=0000018
the of a to in (p=.0003) .
[ o0 [ 0.0 [0.02]002[0.02] eoe -"‘| T
: | | | I | see ] eee | {
.06 .09 .11 .13.15 .66 .99



Autoregressive Language Models
0000000000080

Neural Autoregressive LMs

The cat is }—>’ Model }—»’ cute

This can be treated as |V|-way classification problems, with regular
classification approaches.

Key idea: generate one token at a time.

Compared to n-gram LMs, Transformer-based LMs can handle
much longer dependencies and generate coherent text.

Suppose | have one apple, and you have two more apples than me.
How many apples do we have together?

You have one apple, and | have two more than you, which means | have 1 + 2 = 3 apples.

Together, we have:

1+3=4apples @O ®




Autoregressive Language Models Decoding from Autoregressive LMs

000000000000 e O0O00000C

Neural Autoregressive LMs: Training

Suppose training examples are drawn from an i.i.d. distribution.

Objective: maximize the (log) likelihood of the training data,
which can be broken down into token-level probabilities.

N
0" =arg max ) log Pe(x))
i=1

i

N T
= arg mgxz Y log Po(Xit | Xi1, -+, Xit-1)
i=1t=1

Evaluation



Decoding from Autoregressive LMs
©0000000

Recap: Unified View of NLP

arg max score(s, y; ©)
y

s: input text, y: output, @: model parameters.

Past lectures: text classification, with y being a class label.

These two lectures: language models, with y being a word and s
being the context.

® From the classification perspective, this is a natural extension of
classification.

® From the word embeddings perspective, we are now allowed to use
more complex models score(s, y, ©).



Autoregressive Language Models Decoding from Autoregressive LMs Evaluation
0000000000000 0O®000000 000

Generating Text from Language Models

Given a well-trained language model Pg(x¢ | x1,...,xt—1), how do
we generate text?

At each time step, we have several options:

® Greedy decoding: choose the token with the highest probability.

® Beam search: keep track of the top-k hypotheses.

® Sampling: sample from the distribution.

® Top-k sampling: sample from the top-k tokens with the highest
probability.

® Nucleus sampling (top-p) sampling: sample from the smallest set
of tokens whose cumulative probability exceeds a threshold p.



guage Models Decoding from Autoregressive LMs Evaluation
) 0O0@00000 [e]e]e}

Greedy Decoding

At each time step, choose the token with the highest probability.
Repeat until the (EOS) token is generated, or it reaches a

maximum length.
P(cat| The) = 0.4

P(person | The) = 0.1

P(The) = 0.3
P(A) =02



Decoding from Autoregressive LMs
00080000

Beam Search

At each time step, keep track of the top-k hypotheses.

Repeat until the (EOS) token is generated, or it reaches a
maximum length.

Example
(Beam size = 2)

Step 1:

® The (0.3)
° A(0.2)
Step 2:

® The cat (0.12)
® A dog (0.1)




guage Models Decoding from Autoregressive LMs Evaluation
) 0O000@000 [e]e]e}

Greedy Decoding vs. Beam Search

Q: Which one gives a higher probability among all 2-token
sequences, greedy decoding or beam search (k = 2)?

A: Beam search (A dog, P = 0.16).




Decoding from Autoregressive LMs
00000000

Greedy Decoding vs. Beam Search

Q: Which one gives a sequence with higher probability among all
3-token sentences, greedy decoding or beam search (k = 2)?

A: Greedy decoding ( The cat meows, P = 0.15).

Evaluation



Decoding from Autoregressive LMs
00000000

Language Modeling: Summary

Autoregressive language modeling (e.g., GPT, Radford et al.,
2018):

’ The cat is }—>’ Model }—>’ cute. ‘

Masked language modeling (BERT, Devlin et al., 2019):

’ The [MASK] is cute. H Model H cat ‘
| The [MASK] [MASK] cute. |—»] Model |—{ cat,is |




Autoregressive Language Models Decoding from Autoregressive LMs Evaluation
0000000000000 0000000e 000

Sampling

A language model defines a probability distribution over the
vocabulary at each time step, which we can sample from.

In addition to direct sampling, there are several advanced
strategies to sample from the distribution:

Top-k sampling Top-p (Nucleus) sampling
(Holtzman et al., 2019)
Lo- S = The boy went to the ___ o S = The boy went to the ___
08 0.8
s =4 o0 p=0.75
S E3
E:EI4 EDA'
- l l N Il
ads --——— vo- | --———
ark__ store grocery beach festaurant park  store grocery| beach restaurant
Next token [W] Next token [W]
Avoid sampling from the tail of Another way to define the tail of

the distribution. the distribution.



Evaluation
©00

Evaluating Language Models

Extrinsic (task-based) evaluation: use the language model as a
component in a downstream task, and see if the performance
improves.

Downsides:

® Can be time-consuming.

® The performance may be affected by how LMs are used.
Intrinsic evaluation: compute and compare the probability on
held-out data, where perplexity is the standard metric.
Downsides:

® May not correlate well with downstream task performance.



Evaluation
0e0

Perplexity of Held-Out Data

Log-probability of held-out data X with model Pg:

log Pe(X) = Z log, P (x)
xekX

Divide by the number of tokens (including the (EOS) token) to get
the average log-probability per token:

1
¢ =Avg log Pe(X) = ] log, Pe(X)

1

Perplexity(X; ©) = 2~ = 2~ 1°8Pe(¥) _ po ()~

0: token-level cross-entropy loss.

Higher the probability of the held-out data means... it's less
perplexing to the model.



Autoregressive Language Models Decoding from Autoregressive LMs Evaluation
0000000000000 00000000 ooe

Next

Masked Language Models, Sequence Labeling



	Autoregressive Language Models
	Decoding from Autoregressive LMs
	Evaluation

