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Recap: Distributional Semantics

You shall know a word by the company it keeps.
—J. R. Firth, 1957

A bottle of tezgiiino is on the table.

Everybody likes tezgiiino.

Don’t have too much tezgiiino before you drive.
Tezgiiino is made out of corn.

A bottle of is on the table.
Everybody likes .
Don't have too much before you drive.

is made out of corn.

This is language modeling.
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Language model: a probability distribution over strings in a
language.

P(x) = P(x1, x2, ..., XT)
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P(Dog the asd@sdf 11247!17?)
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P(x) = P(x1, x2, ..., XT)
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Language modeling: the task of estimating this string
distribution from data.
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® Define a statistical model Pg(x) (x: string).



Language Models
Language model: a probability distribution over strings in a
language.

P(x) = P(x1, x2, ..., XT)

P(The cat is cute.) = 0.00000004
P(I am hungry.) = 0.0000001
P(Dog the asd@sdf 11247!17) ~ 0
Language modeling: the task of estimating this string
distribution from data.

® Define a statistical model Pg(x) (x: string).
® Estimate the parameters ® from data (by maximizing likelihood).

N N
OFf =arg maxH Pg(x;) = arg max Z log Pg (x;)
0 i1 i=1
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Language Modeling as a Foundational Task

Compared to classification, which is somewhat a task-specific
problem, language modeling is a more general task to be
integrated into many NLP tasks.

Assigning probabilities to token sequences helps
® Machine translation
P(turn the camera off) > P(put the camera out)
® Speech recognition
P(a tomato garden) > P(a tornado garden)
® Grammatical error correction
P(about fifteen minutes) > P(about fifteen minuets)
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Language Models: Data Matters
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Language Models: Data Matters
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Language models highly depend on their training data that define
the population distribution.
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P(x1.7) = P(x1, %2, ..., XT)
Related task: compute the probability of the next word.
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From a high-level modeling perspective,

® Autoregressive language models: compute P(x7|x1, X2, ..., X7-1).
® Masked language models: compute P(xx|x1, ..., Xk—1, Xkt+1.---)
with some tokens masked.
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Language Modeling: From Word to Sequence Probability

Goal: compute the probability of a sequence of tokens.
P(x1.7) = P(x1, %2, ..., XT)
Related task: compute the probability of the next word.
P(x1|x1:7-1) = P(xT|x1, %2, - ., X7—1)

From a high-level modeling perspective,

® Autoregressive language models: compute P(x7|x1, X2, ..., X7-1).
® Masked language models: compute P(xx|x1, ..., Xk_1, Xkt1.---)
with some tokens masked.

From a methodological perspective,

® Count-based language models: n-gram models.
® Neural language models: RNNs, LSTMs, Transformers.



Autoregressive Language Models
©00000000000

Autoregressive Language Models

Recall the chain rule of probability:

P(A,B) = P(A)P(B | A)



Autoregressive Language Models
©00000000000

Autoregressive Language Models

Recall the chain rule of probability:

P(A,B) = P(A)P(B | A)
P(A, B, C) = P(A)P(B| A)P(C| A, B)



Autoregressive Language Models
©00000000000

Autoregressive Language Models

Recall the chain rule of probability:

P(A,B) = P(A)P(B | A)
P(A, B, C) = P(A)P(B| A)P(C| A, B)

Applying it to sequences of tokens:

:P(X]_)P(X2 | X1)P(X3 | X1,X2) ...P(XT | X1,X2,...,XT_1)

An autoregressive language model computes the conditional
probability P(XT | X1, X2, v ,XT_]_).
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Autoregressive Language Models

Recall the chain rule of probability:

P(A,B) = P(A)P(B | A)
P(A, B, C) = P(A)P(B| A)P(C| A, B)

Applying it to sequences of tokens:

:P(X]_)P(X2 | X1)P(X3 | X1,X2) ...P(XT | X1,X2,...,XT_1)

An autoregressive language model computes the conditional
probability P(XT | X1, X2, v ,XT_]_).

Important detail: remember to model sequence length — a special
token (EOS) is necessary in probabilistic terms!
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P((EOS) | x) denotes the stop probability.



Autoregressive Language Models
000000000000

Modeling Length: The End-of-Sequence Token

A language model assigns probabilities to token sequences x at a
desired granularity (e.g., sentences, paragraphs, documents).

Given that granularity, x can be of any length.

To form a well-defined probability distribution, we need to have
Y P(x) =1.

Sequence length is modeled by including a special token (EQS).
P({EOS) | x) denotes the stop probability.

Instead of calculating P(xl,xz, ..., XT), we calculate
P(x1,x2, ..., xT, (E0S)) as the sequence probability.
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What if we don’t have the (EOS) token?

Recall our autoregressive language model calculates
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Modeling Length: The End-of-Sequence Token

What if we don’t have the (EOS) token?

Recall our autoregressive language model calculates

probability,€[0,1]

P(x1,....,x7) = P(x1,...x7—1)P(xT | x1,...,x7-1)
< P(xq, ..., x7-1)
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Modeling Length: The End-of-Sequence Token

What if we don’t have the (EOS) token?

Recall our autoregressive language model calculates

probability,€[0,1]

If there is no (EOS) token

P(x1,....,x7) = P(x1,...x7—1)P(xT | x1,...,x7-1)
< P(xq, ..., x7-1)

P(The cat is cute.) < P(The cat is)
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Modeling Length: The End-of-Sequence Token

What if we don’t have the (EOS) token?

Recall our autoregressive language model calculates

P(X]_,X2, .. .,XT) = P(Xl)P(X2 | Xl) e P(XT | X1, X2, ... ,XT_1)

probability,€[0,1]
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Modeling Length: The End-of-Sequence Token

What if we don’t have the (EOS) token?

Recall our autoregressive language model calculates

P(X]_,X2, . .,XT) = P(Xl)P(X2 | Xl) e P(XT | X1, X2, ... ,XT_1)

probability,€[0,1]
If there is no (EOS) token

(length T=1) Y P(xu7)= ), P(x) =1

x1€V

V: vocabulary.
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Modeling Length: The End-of-Sequence Token

What if we don’t have the (EOS) token?

Recall our autoregressive language model calculates

P(X]_,X2, . .,XT) = P(Xl)P(Xz ‘ Xl) e P(XT | X1, X2, ... ,XT_1)

probability,€[0,1]
If there is no (EOS) token
(length T=1) ZP(XLT) = Z P(x1) =

x1€V

(length T=2) Y P(x1.7) = Y Y P(x1)P(x | x1)

x1€VxeV

= Z P(x1) (Z P(x2 | X1)> =1

x1€V xpeV

V: vocabulary.
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If we have the (EOS) token, the sum of sequence probability
becomes

ZP (EDS))
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Modeling Length: The End-of-Sequence Token

If we have the (EOS) token, the sum of sequence probability
becomes

ZP (E0S)) =1

Idea for proof: once you reach the (EOS) token after sampling x;. 7,
certain probability mass is taken away—Ilonger sequences that use
X1.7 share the remaining probability mass.



Autoregressive Language Models
000080000000

Modeling Length: The End-of-Sequence Token

If we have the (EOS) token, the sum of sequence probability
becomes

ZP (E0S)) =1

Idea for proof: once you reach the (EOS) token after sampling x;. 7,
certain probability mass is taken away—Ilonger sequences that use
X1.7 share the remaining probability mass.

Practice: complete the proof.
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Modeling Length: The End-of-Sequence Token

P(meows, (EOS))
=P(meows) P({E0S) | meows)

Each edge represents a (con-
ditional) probability term af-
ter factorization.
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Q: Suppose we have a vocabulary size |V| = 50K, how many
sequences of length T can we have?
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N-Gram Language Models: The Markov Assumption

Q: Suppose we have a vocabulary size |V| = 50K, how many
sequences of length T can we have?

A: |V|T, which could be extremely large when T > 3.

Counting-based methods cannot efficiently model
the conditional probability P(x7 | x1, x2, ..., X7-1)
when n goes large.

P(The cat is cute.)
=P(The)P(cat | The)P(is| The cat)
P(cute | The cat is)P(. | The cat is cute)
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N-Gram Language Models: The Markov Assumption

Q: Suppose we have a vocabulary size |V| = 50K, how many
sequences of length T can we have?

A: |V|T, which could be extremely large when T > 3.

Counting-based methods cannot efficiently model
the conditional probability P(x7 | x1, x2, ..., X7-1)
when n goes large.

P(The cat is cute.)
=P(The)P(cat | The)P(is| The cat)
P(cute | The cat is)P(. | The cat is cute)

The Markov assumption: the probability of a
token only depends on the previous n — 1 tokens
(n << sequence length T).

[Andrey Markov]
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N-Gram Language Models: The Markov Assumption

In other words, the Markov assumption assumes independence of
a token from distant history, conditioning on its close history.

P(X,' | X1, X2, ¢ ,X;_1) ~ P(X,' | Xi—n+1y Xi—n+2, - - .,X,'_1)

always n— 1 entries
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N-Gram Language Models: The Markov Assumption

In other words, the Markov assumption assumes independence of
a token from distant history, conditioning on its close history.

P(X,' | X1, X2, ¢ ,X;_1) ~ P(X,' | Xi—n+1y Xi—n+2, - - .,X,'_1)

always n— 1 entries

We can estimate the conditional probability

P(x;i | Xi—n+1, Xi—n+2, - - -, Xi—1) by counting the occurrences of
n-grams:
p o COUht(X,'_,H_l,...,X,'_1,X,')
(Xf | Xf—n+lr cee XI—].) -

count(Xi—pt1, -+, Xi—1)
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Common N-Gram Language Models
® Unigram language models (n=1):

P(x) = P(x1)P(x2) ... P(xT)
P(This is a cute cat) = P(This)P(is)P(a)P(cute) P(cat)
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Common N-Gram Language Models
¢ Unigram language models (n=1):

P(x) = P(x1)P(x2) ... P(xT)
P(This is a cute cat) = P(This)P(is)P(a)P(cute) P(cat)

The Sentencepiece tokenizer (Kudo et al., 2018) uses this method
to model text probability.
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P(x) = P(x1)P(x2) ... P(xT)
P(This is a cute cat) = P(This)P(is)P(a)P(cute) P(cat)

The Sentencepiece tokenizer (Kudo et al., 2018) uses this method
to model text probability.
Caveat: there is no way to have the (E0S) fix for unigram LMs.
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Common N-Gram Language Models
¢ Unigram language models (n=1):
P(x) = P(x1)P(x2) ... P(xT)
P(This is a cute cat) = P(This)P(is)P(a)P(cute) P(cat)

The Sentencepiece tokenizer (Kudo et al., 2018) uses this method
to model text probability.

Caveat: there is no way to have the (E0S) fix for unigram LMs.
¢ Bigram language models (n=2):

.
P(x) =P(x1) ;P(Xi | xi-1)

P(This is a cute cat) =P(This)P(is | This)P(a | is)P(cute| a)
P(cat | cute) P((E0S) | cat)
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Common N-Gram Language Models
¢ Unigram language models (n=1):
P(x) = P(x1)P(x2) ... P(xT)
P(This is a cute cat) = P(This)P(is)P(a)P(cute) P(cat)

The Sentencepiece tokenizer (Kudo et al., 2018) uses this method
to model text probability.

Caveat: there is no way to have the (E0S) fix for unigram LMs.
¢ Bigram language models (n=2):

.
P(x) =P(x1) ;P(Xi | xi-1)

P(This is a cute cat) =P(This)P(is | This)P(a | is)P(cute| a)
P(cat | cute) P((E0S) | cat)

® N-Gram language models (n>2): similar to bigram models—should
be paired with sparse techniques to store the probabilities.
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Sample Sentences from Unigram and Bigram LMs

Both trained on financial news.

Model 1:
fifth an of futures the an incorporated a a the inflation most
dollars quarter in is mass thrift did eighty said hard 'm july
bullish that or limited the

Model 2:
texaco rose one in this issue is pursuing growth in a boiler house
said mr. gurria mexico s motion control proposal without
permission from five hundred fifty five yen outside new car
parking lot of the agreement reached this would be a record
november
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Sample Sentences from Unigram and Bigram LMs

Both trained on financial news.

Model 1: Unigram LM
fifth an of futures the an incorporated a a the inflation most
dollars quarter in is mass thrift did eighty said hard 'm july
bullish that or limited the

Model 2: Bigram LM
texaco rose one in this issue is pursuing growth in a boiler house
said mr. gurria mexico s motion control proposal without
permission from five hundred fifty five yen outside new car
parking lot of the agreement reached this would be a record
november
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Generating from a Language Model

Taking bigram LMs as an example,

Generate the first word wy ~ P(wy).

e Generate the second word wy ~ P(wy | wy).

e Generate the third word wy ~ P(ws | wy, wa) = P(ws | wy).
[ ]

[ ]

Repeat until the (EQS) token is generated.
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Generating from a Language Model

Taking bigram LMs as an example,

e Generate the first word wy ~ P(wy).

e Generate the second word wy ~ P(wy | wy).

e Generate the third word wy ~ P(ws | wy, wa) = P(ws | wy).
[ ]

[ ]

Repeat until the (EOS) token is generated.

Recap: sampling from a distribution.

polyphonic
however P=0000018
the of a to in (p=.0003) .
[ o0 [ 0.0 [0.02]002[0.02] eoe ."‘| T
| | | 1 1 1 voe | .o
.06 .09 .11 .13.15 .66 .99

0
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Neural Autoregressive LMs

The cat is H Model H cute
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The cat is }—>’ Model }—»’ cute

This can be treated as |V|-way classification problems, with regular
classification approaches.

Key idea: generate one token at a time.
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Neural Autoregressive LMs

The cat is }—>’ Model }—»’ cute

This can be treated as |V|-way classification problems, with regular
classification approaches.

Key idea: generate one token at a time.

Compared to n-gram LMs, Transformer-based LMs can handle
much longer dependencies and generate coherent text.

Suppose | have one apple, and you have two more apples than me.
How many apples do we have together?

You have one apple, and | have two more than you, which means | have 1 + 2 = 3 apples.

Together, we have:

1+3=4apples @O ®
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Neural Autoregressive LMs: Training

Suppose training examples are drawn from an i.i.d. distribution.

Objective: maximize the (log) likelihood of the training data,
which can be broken down into token-level probabilities.

N
0" =arg max ) log Pe(x))
i=1

i

N T
= arg mgxz Y log Po(Xit | Xi1, -+, Xit-1)
i=1t=1
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arg max score(s, y; ©)
y

s: input text, y: output, @: model parameters.
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Recap: Unified View of NLP

arg max score(s, y; ©)
y

s: input text, y: output, @: model parameters.

Past lectures: text classification, with y being a class label.

These two lectures: language models, with y being a word and s
being the context.

® From the classification perspective, this is a natural extension of
classification.

® From the word embeddings perspective, we are now allowed to use
more complex models score(s, y; ©).
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Given a well-trained language model Pg(x¢ | x1,...,xt—1), how do
we generate text?
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Generating Text from Language Models

Given a well-trained language model Pg(x¢ | x1,...,xt—1), how do
we generate text?

At each time step, we have several options:

® Greedy decoding: choose the token with the highest probability.

® Beam search: keep track of the top-k hypotheses.

® Sampling: sample from the distribution.

® Top-k sampling: sample from the top-k tokens with the highest
probability.

® Nucleus sampling (top-p) sampling: sample from the smallest set
of tokens whose cumulative probability exceeds a threshold p.



Greedy Decoding

At each time step, choose the token with the highest probability.

Repeat until the (EOS) token is generated, or it reaches a
maximum length.
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Greedy Decoding

At each time step, choose the token with the highest probability.
Repeat until the (EOS) token is generated, or it reaches a

maximum length.
P(cat| The) = 0.4

P(person | The) = 0.1

P(The) = 0.3
P(A) =02



Beam Search

At each time step, keep track of the top-k hypotheses.

Repeat until the (EOS) token is generated, or it reaches a
maximum length.

Example
(Beam size = 2)



Beam Search

At each time step, keep track of the top-k hypotheses.

Repeat until the (EOS) token is generated, or it reaches a
maximum length.

Example
(Beam size = 2)
Step 1:

* The (0.3)
° A(02)




Beam Search

At each time step, keep track of the top-k hypotheses.

Repeat until the (EOS) token is generated, or it reaches a
maximum length.

Example
(Beam size = 2)

Step 1:

® The (0.3)
° A(0.2)
Step 2:

® The cat (0.12)
® A dog (0.1)
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Greedy Decoding vs. Beam Search

Q: Which one gives a higher probability among all 2-token
sequences, greedy decoding or beam search (k = 2)?
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Greedy Decoding vs. Beam Search

Q: Which one gives a higher probability among all 2-token
sequences, greedy decoding or beam search (k = 2)?

p:O-4
()
@ p=0.3
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Greedy Decoding vs. Beam Search

Q: Which one gives a higher probability among all 2-token
sequences, greedy decoding or beam search (k = 2)?

A: Beam search (A dog, P = 0.16).
(T o
@ p=0.3
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Greedy Decoding vs. Beam Search

Q: Which one gives a sequence with higher probability among all
3-token sentences, greedy decoding or beam search (k = 2)?
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Greedy Decoding vs. Beam Search

Q: Which one gives a sequence with higher probability among all
3-token sentences, greedy decoding or beam search (k = 2)?

A: Greedy decoding ( The cat meows, P = 0.15).
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Autoregressive language modeling (e.g., GPT, Radford et al.,
2018):

’ The cat is }—>’ Model }—>’ cute. ‘

Masked language modeling (BERT, Devlin et al., 2019):

’ The [MASK] is cute. H Model H cat ‘
| The [MASK] [MASK] cute. |—»] Model |—{ cat,is |
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Sampling

A language model defines a probability distribution over the
vocabulary at each time step, which we can sample from.

In addition to direct sampling, there are several advanced
strategies to sample from the distribution:

Top-k sampling Top-p (Nucleus) sampling
(Holtzman et al., 2019)
Lo- S = The boy went to the ___ o S = The boy went to the ___
08 0.8
s =4 o0 p=0.75
S E3
E:EI4 EDA'
- l l N Il
ads --——— vo- | --———
ark__ store grocery beach festaurant park  store grocery| beach restaurant
Next token [W] Next token [W]
Avoid sampling from the tail of Another way to define the tail of

the distribution. the distribution.
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Evaluating Language Models

Extrinsic (task-based) evaluation: use the language model as a
component in a downstream task, and see if the performance
improves.

Downsides:

® Can be time-consuming.

® The performance may be affected by how LMs are used.
Intrinsic evaluation: compute and compare the probability on
held-out data, where perplexity is the standard metric.
Downsides:

® May not correlate well with downstream task performance.
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Perplexity of Held-Out Data

Log-probability of held-out data X with model Pg:

log Pe(X) = Z log, P (x)
xekX

Divide by the number of tokens (including the (EOS) token) to get
the average log-probability per token:

1
¢ =Avg log Pe(X) = ] log, Pe(X)

1

Perplexity(X; ©) = o=t _ 2—ﬁlog2 Po(X) _ Pe(X) T

0: token-level cross-entropy loss.

Higher the probability of the held-out data means... it's less
perplexing to the model.
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Next

Masked Language Models, Sequence Labeling



	Autoregressive Language Models

