CS 784: Computational Linguistics Lecture 11: Masked Language Models and Sequence Labeling

Freda Shi

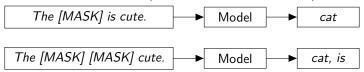
School of Computer Science, University of Waterloo fhs@uwaterloo.ca

February 26, 2025

Recap: Language Models

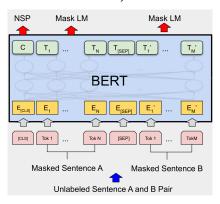
Autoregressive language modeling (e.g., GPT, Radford et al., 2018):

Masked language modeling (BERT, Devlin et al., 2019):



Masked Language Models

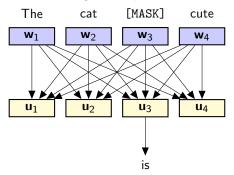
Bidirectional Encoder Representations from Transformers (BERT, Devlin et al., 2019):



- Two (random) sentences.
- Two objectives:
 - Masked I M.
 - Next sentence prediction (NSP).
- Two special tokens:
 - [CLS]: classification token.
 - [SEP]: separator token.

Pretraining Objectives

- Masked LM: given a sentence, mask some tokens and predict them.
 - A portion (15%) of tokens are replaced with [MASK].
 - Predict masked tokens using the output of the model.



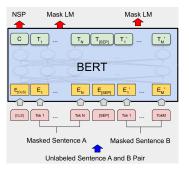
$$\mathbf{w}_1, \dots, \mathbf{w}_4 o \mathbf{K}, \mathbf{Q}, \mathbf{V} \qquad \mathbf{U} = \mathbf{V} ext{softmax} \left(rac{\mathbf{K}^T \mathbf{Q}}{\sqrt{d}}
ight) \qquad \mathbf{u}_3 o ext{is}$$

Pretraining Objectives

 Next sentence prediction (NSP): given two sentences, predict if they are consecutive or not.

Underlying hypothesis: understanding of sentence relations makes better general-purpose sentence representation.

Approach: binary classification with the [CLS] token representation.



RoBERTa (Liu et al., 2020): no NSP, larger batch size, more data, more training steps.

- [SEP]: the separator token indicating sentence boundaries.
- [CLS]: the classification token.
 - The output of the [CLS] token is used for next-sentence prediction.

These tokens can be renamed with whatever you like.

There is no specific reason why [CLS] is at the beginning.

After Pretraining

- Feature-based transfer learning: instead of manually designed features, use a pre-trained model as feature extractor.
 Train another model with the extracted features.
 All layers of the pre-trained model are frozen.
- Fine-tuning: Keep the model architecture and weights, but continue training on a new task.
 The model weights can be updated during fine-tuning.

Practical convention: use the [CLS] token output as text representation for classification tasks.

I strongly encourage you to try out the BERT model in the Hugging Face Transformers library if you haven't done so! https://huggingface.co/docs/transformers/en/model_doc/bert

Sequence labeling: assign a label to each token in a sequence.

Taking part-of-speech (POS) tagging as an example:

classify(s) =
$$\underset{y}{\operatorname{arg max}} \operatorname{score}(s, y; \Theta)$$

POS-Tag(s) = $\underset{y}{\operatorname{arg max}} \operatorname{score}(s, y; \Theta)$

Key difference from classification: the output is a sequence, not a single label.

Two random variables X and Y are independent if for all x and y,

$$P(X = x, Y = y) = P(X = x)P(Y = y).$$

Two random variables X and Y are conditionally independent given Z if for all x, y, and z,

$$P(X = x, Y = y \mid Z = z) = P(X = x \mid Z = z)P(Y = y \mid Z = z)$$

We write this as $X \perp Y \mid Z$.

Example: height and vocabulary size are (or at least should be) conditionally independent given age.

Markov Assumption and Markov Chain

Recap: the Markov assumption in n-gram language models implies an (n-1)-th order Markov assumption.

$$P(w_i \mid w_1, ..., w_{i-1}) = P(w_i \mid w_{i-n+1}, ..., w_{i-1})$$

First-order Markov assumption:

$$P(w_i \mid w_1, ..., w_{i-1}) = P(w_i \mid w_{i-1})$$

A Markov chain is a sequence of random variables $X_1, X_2, ..., X_n$ satisfies the Markov assumption: $X_t \perp X_{t-2}, ..., X_1 \mid X_{t-1}$.

Hidden Markov Models (HMMs) extend the Markov assumption to a set of **hidden states**.

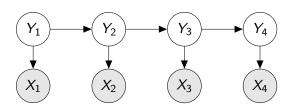
Note: the *hidden states* here is not the same as the *hidden layer/stats* in neural networks.

A good starting point of learning probabilistic graphical models.

Hidden Markov Models (HMMs)

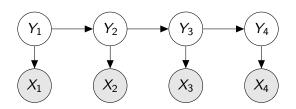
Modeling the joint probability of the observed sequence of variables X_1, \ldots, X_n and the hidden sequence of variables Y_1, \ldots, Y_n :

$$P(X_1,...,X_n,Y_1,...,Y_n) = P(Y_1) \prod_{i=2}^n P(Y_i \mid Y_{i-1}) \prod_{i=1}^n P(X_i \mid Y_i)$$



An instantiation of **Bayesian networks**: representing conditional dependency with a directed acyclic graph (DAG).

Conditional Independence in HMMs



Intuitive interpretation: if the given variable Z is removed from the graph, two variables X and Y are conditionally independent if they are disconnected.

$$Y_t \perp Y_{t-2}, \dots, Y_1, X_{t-1}, X_{t-2}, \dots, X_1 \mid Y_{t-1}$$

 $X_t \perp Y_n, \dots, Y_{t+1}, Y_{t-1}, \dots, Y_1, X_n, \dots, X_{t+1}, X_{t-1}, \dots, X_1 \mid Y_t$

In a Bayesian network, the direction of arcs does not necessarily have specific meanings.

These two Bayesian networks represents the following, respectively.

$$P(X, Y) = P(X)P(Y \mid X)$$
 $P(X, Y) = P(Y)P(X \mid Y)$

However, it's always intuitive to construct Bayesian networks with **causal relationships** in mind.

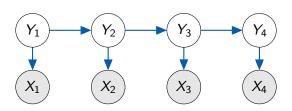
Problem Formulation

Suppose with are given a pretrained HMM with

- The transition probabilities $P(Y_i | Y_{i-1})$, shared across time steps
- The emission probabilities $P(X_i \mid Y_i)$, shared across time steps
- The initial state distribution $P(Y_1)$
- The observation sequence X_1, \ldots, X_n

What is the most likely sequence of hidden states Y_1, \ldots, Y_n ?

$$\arg\max_{Y_1,\ldots,Y_n} P(Y_1,\ldots,Y_n \mid X_1,\ldots,X_n)$$



HMMs: Inference

Goal :
$$\arg\max_{Y_1,...,Y_n} P(Y_1,...,Y_n \mid X_1,...,X_n)$$
 $\arg\max_{Y_1,...,Y_n} P(Y_1,...,Y_n,X_1,...,X_n)$

Bruce-force solution: enumerate all possible sequences of hidden states and compute the joint probability.

The Viterbi algorithm: compute it efficiently with dynamic programming.

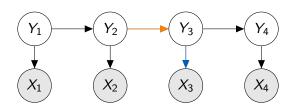
HMMs: Inference

Goal: arg
$$\max_{Y_1,\ldots,Y_n} P(Y_1,\ldots,Y_n,X_1,\ldots,X_n)$$

For all
$$i = 1, ..., n$$
 and $j = 1, ..., k$

$$F[i,j] = \max_{y_1, ..., y_{i-1}} P(y_1, ..., y_{i-1}, Y_i = y_j, X_1, ..., X_i)$$

$$= \max_{y_\ell} F[i-1, \ell] P(Y_i = y_j \mid Y_{i-1} = y_\ell) P(X_i \mid Y_i = y_j)$$



The Viterbi Algorithm (cont.)

HMMs: Inference 000

This dynamic programming algorithm depends on the conditional independence.

$$F[i,j] = \max_{y_1,\dots,y_{i-1}} P(y_1,\dots,y_{i-1},Y_i = y_j,X_1,\dots,X_i)$$

$$= \max_{y_\ell} P(y_1,\dots,y_{i-1} = y_\ell,X_1,\dots,X_{i-1})$$

$$P(Y_i = y_j \mid y_1,\dots,Y_{i-1} = y_\ell,X_1,\dots,X_{i-1})$$

$$P(X_i \mid y_1,\dots,Y_{i-1} = y_\ell,Y_i = y_j,X_1,\dots,X_{i-1})$$

$$= \max_{y_\ell} F[i-1,\ell]P(Y_i = y_j \mid Y_{i-1} = y_\ell)P(X_i \mid Y_i = y_j)$$

Training HMMs with Supervised Data

Suppose we have a set of training data $\{(x_{1,1}, y_{1,1}), (x_{1,2}, y_{1,2}), \dots, (x_{1,n_1}, y_{1,n_1}), \dots (x_{m,1}, y_{m,1}), \dots, (x_{m,n_m}, y_{m,n_m})\}.$

m: number of sequences n_i : length of the i-th sequence.

We can directly estimate the HMM parameters (i.e., transition, emission and start probabilities) from the data by counting.

$$P(Y_i = y_j \mid Y_{i-1} = y_\ell) = \frac{\operatorname{count}(y_\ell, y_j)}{\operatorname{count}(y_\ell)}$$

$$P(X_i = x_j \mid Y_i = y_\ell) = \frac{\operatorname{count}(x_j, y_\ell)}{\operatorname{count}(y_\ell)}$$

$$P(Y_i = y_j) = \frac{\operatorname{count}(\hat{y}_j)}{m}$$

HMM Induction

What if the training data is not labeled?

We have a set of training input only

$$\{x_{1,1}, x_{1,2}, \ldots, x_{1,n_1}, \ldots, x_{m,1}, \ldots, x_{m,n_m}\}.$$

We can still assume the underlying model is an HMM and use the **Expectation-Maximization (EM) algorithm** to estimate the parameters.

- Expectation: compute the probability of the hidden states given the observed data.
- Maximization: update the model parameters based on the expected counts

Also known as the Baum-Welch algorithm.

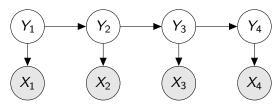
Forward Probability

$$\alpha_{i}(j) = P(X_{1} = x_{1}, \dots, X_{i} = x_{i}, Y_{i} = y_{j})$$

$$= \sum_{j=1}^{k} P(X_{1} = x_{1}, \dots, X_{i} = x_{i}, Y_{i-1} = y_{j}, Y_{i} = y_{j})$$

$$= \sum_{j=1}^{k} \alpha_{i-1}(j')P(X_{i} = x_{i}, Y_{i} = y_{j} \mid Y_{i-1} = y_{j'}, X_{1}, \dots, X_{i-1})$$

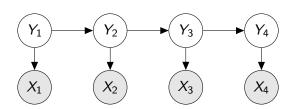
$$= \sum_{j=1}^{k} \alpha_{i-1}(j')P(X_{i} = x_{i} \mid Y_{i} = y_{j})P(Y_{i} = y_{j} \mid Y_{i-1} = y_{j'})$$



Backward Probability

$$\beta_{i}(j) = P(X_{i+1} = x_{i+1}, \dots, X_{n} = x_{n} \mid Y_{i} = y_{j})$$

$$= \sum_{j'=1}^{k} \beta_{i+1}(j') P(X_{i+1} = x_{i+1} \mid Y_{i+1} = y_{j'}) P(Y_{i+1} = y_{j'} \mid Y_{i} = y_{j})$$



Forward-Backward Probability

Given α and β , we can compute the **forward-backward probability** (i.e., soft count):

$$\alpha_{i}(j)\beta_{i}(j) = P(X_{1:i}, Y_{i} = y_{j})P(X_{i+1:n} \mid Y_{i} = y_{j})$$

$$= P(X_{1:n}, Y_{i} = y_{j})$$

$$\propto P(Y_{i} = y_{j} \mid X_{1:n}) = \gamma_{i}(j)$$

And also the soft transition count:

$$\xi_i(j,j') = P(Y_i = y_j, Y_{i+1} = y_{j'} \mid X_{1:n})$$

Estimated Soft Transition Count

$$\xi_{i}(j, j') = P(Y_{i} = y_{j}, Y_{i+1} = y_{j'} \mid X_{1:n})$$

$$\alpha_{i}(j) = P(X_{1:i}, Y_{i} = y_{j})$$

$$\beta_{i+1}(j') = P(X_{i+2:n} \mid Y_{i+1} = y_{j'})$$

$$\alpha_{i}(j)\beta_{i+1}(j') = P(X_{1:i}, Y_{i} = y_{j})P(X_{i+2:n} \mid Y_{i+1} = y_{j'})$$

What is missing to combine the above into a joint probability distribution?

$$P(Y_{i+1} = y_{j'} \mid Y_i = y_j, X_{1:n}) = P(Y_{i+1} = y_{j'} \mid Y_i = y_j)$$

$$P(X_{i+1} \mid Y_{i+1} = y_{j'}, Y_i = y_j, X_{1:n}) = P(X_{i+1} \mid Y_{i+1} = y_{j'})$$

$$\xi_i(j,j') = \frac{\alpha_i(j)\beta_{i+1}(j')P(Y_{i+1} = y_{j'} \mid Y_i = y_j)P(X_{i+1} \mid Y_{i+1} = y_{j'})}{P(X_{1:n})}$$

Training HMMs with EM

- E-step: compute the forward-backward probability γ and the soft transition probability ξ .
- M-step: update the model parameters based on the expected counts.

$$P(Y_{1} = y_{j}) = \frac{\sum_{i=1}^{m} \gamma_{1}^{(i)}(j)}{m}$$

$$P(Y_{i} = y_{j} \mid Y_{i-1} = y_{\ell}) = \frac{\sum_{i=1}^{m} \sum_{t=1}^{n_{i}-1} \xi_{t}^{(i)}(\ell, j)}{\sum_{i=1}^{m} \sum_{t=1}^{n_{i}-1} \gamma_{t}^{(i)}(\ell)}$$

$$P(X_{i} = x_{j} \mid Y_{i} = y_{\ell}) = \frac{\sum_{i=1}^{m} \sum_{t=1}^{n_{i}} \gamma_{t}^{(i)}(\ell) \mathbb{I}(X_{t} = x_{j})}{\sum_{i=1}^{m} \sum_{t=1}^{n_{i}} \gamma_{t}^{(i)}(\ell)}$$

The EM algorithm is guaranteed to converge to a **local maximum** of the likelihood function.

The Baum-Welch algorithm is a special case of the EM algorithms.

Semi-Supervised Learning of HMMs

If we have a small amount of labeled data and a large amount of unlabeled data, we can use the **semi-supervised learning** approach.

Estimate the model parameters with the labeled data, then use the EM algorithm to estimate the model parameters with the unlabeled data.

Complexity Analysis

• The Viterbi algorithm: time complexity $O(nk^2)$ and space complexity O(nk).

$$F[i,j] = \max_{V_{\ell}} F[i-1,\ell] P(Y_i = y_j \mid Y_{i-1} = y_{\ell}) P(X_i \mid Y_i = y_j)$$

• The forward-backward algorithm: time complexity $O(nk^2)$ and space complexity O(nk).

$$\alpha_{i}(j) = \sum_{j'=1}^{k} \alpha_{i-1}(j') P(X_{i} = x_{i} \mid Y_{i} = y_{j}) P(Y_{i} = y_{j} \mid Y_{i-1} = y_{j'})$$

$$\beta_{i}(j) = \sum_{j'=1}^{k} \beta_{i+1}(j') P(X_{i+1} = x_{i+1} \mid Y_{i+1} = y_{j'}) P(Y_{i+1} = y_{j'} \mid Y_{i} = y_{j})$$

Next

Conditional Random Fields Sequence Labeling with Neural Networks