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Recap: Language Models

Autoregressive language modeling (e.g., GPT, Radford et al.,
2018):

The cat is Model cute.

Masked language modeling (BERT, Devlin et al., 2019):
The [MASK] is cute. Model cat

The [MASK] [MASK] cute. Model cat, is
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Masked Language Models

Bidirectional Encoder Representations from Transformers (BERT,
Devlin et al., 2019):

• Two (random) sentences.
• Two objectives:
• Masked LM.
• Next sentence prediction

(NSP).
• Two special tokens:
• [CLS]: classification token.
• [SEP]: separator token.
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Pretraining Objectives
• Masked LM: given a sentence, mask some tokens and predict them.

• A portion (15%) of tokens are replaced with [MASK].
• Predict masked tokens using the output of the model.

The cat [MASK] cute
w1 w2 w3 w4

u1 u2 u3 u4

is

w1, . . . ,w4 → K,Q,V U = Vsoftmax
(

KTQ√
d

)
u3 → is
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Pretraining Objectives

• Next sentence prediction (NSP): given two sentences, predict if
they are consecutive or not.

Underlying hypothesis: understanding of sentence relations makes
better general-purpose sentence representation.
Approach: binary classification with the [CLS] token representation.

RoBERTa (Liu et al., 2020): no
NSP, larger batch size, more data,
more training steps.
Works better than BERT.
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The Special Tokens: [CLS] and [SEP]

• [SEP]: the separator token indicating sentence boundaries.

• [CLS]: the classification token.

• The output of the [CLS] token is used for next-sentence prediction.

These tokens can be renamed with whatever you like.
There is no specific reason why [CLS] is at the beginning.
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After Pretraining

• Feature-based transfer learning: instead of manually designed
features, use a pre-trained model as feature extractor.

Train another model with the extracted features.
All layers of the pre-trained model are frozen.

• Fine-tuning: Keep the model architecture and weights, but continue
training on a new task.

The model weights can be updated during fine-tuning.

Practical convention: use the [CLS] token output as text
representation for classification tasks.
I strongly encourage you to try out the BERT model in the
Hugging Face Transformers library if you haven’t done so! https:
//huggingface.co/docs/transformers/en/model_doc/bert

https://huggingface.co/docs/transformers/en/model_doc/bert
https://huggingface.co/docs/transformers/en/model_doc/bert
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Sequence Labeling: The Task

Input: The cat is cute
Output: DT NN VBZ JJ

Sequence labeling: assign a label to each token in a sequence.

Taking part-of-speech (POS) tagging as an example:

classify(s) = argmax
y

score(s, y;Θ)

POS-Tag(s) = argmax
y

score(s, y;Θ)

Key difference from classification: the output is a sequence, not a
single label.
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Recap: Independence and Conditional Independence

Two random variables X and Y are independent if for all x and y,

P(X = x,Y = y) = P(X = x)P(Y = y).

Two random variables X and Y are conditionally independent given
Z if for all x, y, and z,

P(X = x,Y = y | Z = z) = P(X = x | Z = z)P(Y = y | Z = z)

We write this as X ⊥ Y | Z.

Example: height and vocabulary size are (or at least should be)
conditionally independent given age.
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Markov Assumption and Markov Chain
Recap: the Markov assumption in n-gram language models implies
an (n-1)-th order Markov assumption.

P(wi | w1, . . . ,wi−1) = P(wi | wi−n+1, . . . ,wi−1)

First-order Markov assumption:
P(wi | w1, . . . ,wi−1) = P(wi | wi−1)

A Markov chain is a sequence of random variables X1,X2, . . . ,Xn
satisfies the Markov assumption: Xt ⊥ Xt−2, . . . ,X1 | Xt−1.
Hidden Markov Models (HMMs) extend the Markov
assumption to a set of hidden states.
Note: the hidden states here is not the same as the hidden
layer/stats in neural networks.
A good starting point of learning probabilistic graphical models.
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Hidden Markov Models (HMMs)
Modeling the joint probability of the observed sequence of
variables X1, . . . ,Xn and the hidden sequence of variables
Y1, . . . ,Yn:

P(X1, . . . ,Xn,Y1, . . . ,Yn) = P(Y1)
n

∏
i=2

P(Yi | Yi−1)
n

∏
i=1

P(Xi | Yi)

Y1 Y2 Y3 Y4

X1 X2 X3 X4

An instantiation of Bayesian networks: representing conditional
dependency with a directed acyclic graph (DAG).
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Conditional Independence in HMMs

Y1 Y2 Y3 Y4

X1 X2 X3 X4

Intuitive interpretation: if the given variable Z is removed from the
graph, two variables X and Y are conditionally independent if they
are disconnected.

Yt ⊥

Yt−2, . . . ,Y1,Xt−1,Xt−2, . . . ,X1

| Yt−1

Xt ⊥ Yn, . . . ,Yt+1,Yt−1, . . . ,Y1,Xn, . . . ,Xt+1,Xt−1, . . . ,X1 | Yt
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More Background: Bayesian Networks

In a Bayesian network, the direction of arcs does not necessarily
have specific meanings.

X Y X Y

These two Bayesian networks represents the following, respectively.

P(X,Y) = P(X)P(Y | X) P(X,Y) = P(Y)P(X | Y)

However, it’s always intuitive to construct Bayesian networks with
causal relationships in mind.



13/27

Masked Language Models Sequence Labeling with HMMs HMMs: Inference HMMs: Training

More Background: Bayesian Networks

In a Bayesian network, the direction of arcs does not necessarily
have specific meanings.

X Y X Y

These two Bayesian networks represents the following, respectively.

P(X,Y) = P(X)P(Y | X) P(X,Y) = P(Y)P(X | Y)

However, it’s always intuitive to construct Bayesian networks with
causal relationships in mind.



13/27

Masked Language Models Sequence Labeling with HMMs HMMs: Inference HMMs: Training

More Background: Bayesian Networks

In a Bayesian network, the direction of arcs does not necessarily
have specific meanings.

X Y X Y

These two Bayesian networks represents the following, respectively.

P(X,Y) = P(X)P(Y | X) P(X,Y) = P(Y)P(X | Y)

However, it’s always intuitive to construct Bayesian networks with
causal relationships in mind.
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Problem Formulation
Suppose with are given a pretrained HMM with

• The transition probabilities P(Yi | Yi−1), shared across time steps
• The emission probabilities P(Xi | Yi), shared across time steps
• The initial state distribution P(Y1)
• The observation sequence X1, . . . ,Xn

What is the most likely sequence of hidden states Y1, . . . ,Yn?

arg max
Y1,...,Yn

P(Y1, . . . ,Yn | X1, . . . ,Xn)

Y1 Y2 Y3 Y4

X1 X2 X3 X4
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Inference with HMMs

Goal : arg max
Y1,...,Yn

P(Y1, . . . ,Yn | X1, . . . ,Xn)

arg max
Y1,...,Yn

P(Y1, . . . ,Yn,X1, . . . ,Xn)

Y1 Y2 Y3 Y4

X1 X2 X3 X4

Bruce-force solution: enumerate all possible sequences of hidden
states and compute the joint probability.
The Viterbi algorithm: compute it efficiently with dynamic
programming.
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The Viterbi Algorithm

Goal : arg max
Y1,...,Yn

P(Y1, . . . ,Yn,X1, . . . ,Xn)

For all i = 1, . . . , n and j = 1, . . . , k
F[i, j] = max

y1,...,yi−1
P(y1, . . . , yi−1,Yi = yj,X1, . . . ,Xi)

= max
yℓ

F[i − 1, ℓ]P(Yi = yj | Yi−1 = yℓ)P(Xi | Yi = yj)

Y1 Y2 Y3 Y4

X1 X2 X3 X4
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The Viterbi Algorithm (cont.)

This dynamic programming algorithm depends on the conditional
independence.

F[i, j] = max
y1,...,yi−1

P(y1, . . . , yi−1,Yi = yj,X1, . . . ,Xi)

= max
yℓ

P(y1, . . . , yi−1 = yℓ,X1, . . . ,Xi−1)

P(Yi = yj | y1, . . . ,Yi−1 = yℓ,X1, . . . ,Xi−1)

P(Xi | y1, . . . ,Yi−1 = yℓ,Yi = yj,X1, . . . ,Xi−1)

= max
yℓ

F[i − 1, ℓ]P(Yi = yj | Yi−1 = yℓ)P(Xi | Yi = yj)
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Training HMMs with Supervised Data
Suppose we have a set of training data {(x1,1, y1,1), (x1,2, y1,2), . . . ,
(x1,n1 , y1,n1), . . . (xm,1, ym,1), . . . , (xm,nm , ym,nm)}.
m: number of sequences ni: length of the i-th sequence.

We can directly estimate the HMM parameters (i.e., transition,
emission and start probabilities) from the data by counting.

P(Yi = yj | Yi−1 = yℓ) =
count(yℓ, yj)

count(yℓ)

P(Xi = xj | Yi = yℓ) =
count(xj, yℓ)

count(yℓ)

P(Yi = yj) =
count(̂yj)

m
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HMM Induction

What if the training data is not labeled?
We have a set of training input only
{x1,1, x1,2, . . . , x1,n1 , . . . , xm,1, . . . , xm,nm}.

We can still assume the underlying model is an HMM and use the
Expectation-Maximization (EM) algorithm to estimate the
parameters.
• Expectation: compute the probability of the hidden states given the

observed data.
• Maximization: update the model parameters based on the expected

counts.

Also known as the Baum-Welch algorithm.
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Forward Probability

αi(j) = P(X1 = x1, . . . ,Xi = xi,Yi = yj)

=
k
∑
j′=1

P(X1 = x1, . . . ,Xi = xi,Yi−1 = yj′ ,Yi = yj)

=
k
∑
j′=1

αi−1(j′)P(Xi = xi,Yi = yj | Yi−1 = yj′ ,X1, . . . ,Xi−1)

=
k
∑
j′=1

αi−1(j′)P(Xi = xi | Yi = yj)P(Yi = yj | Yi−1 = yj′)

Y1 Y2 Y3 Y4

X1 X2 X3 X4
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Backward Probability

βi(j) = P(Xi+1 = xi+1, . . . ,Xn = xn | Yi = yj)

=
k
∑
j′=1

βi+1(j′)P(Xi+1 = xi+1 | Yi+1 = yj′)P(Yi+1 = yj′ | Yi = yj)

Y1 Y2 Y3 Y4

X1 X2 X3 X4
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Forward-Backward Probability

Given α and β, we can compute the forward-backward
probability (i.e., soft count):

αi(j)βi(j) = P(X1:i,Yi = yj)P(Xi+1:n | Yi = yj)

= P(X1:n,Yi = yj)

∝ P(Yi = yj | X1:n) = γi(j)

And also the soft transition count:

ξi(j, j′) = P(Yi = yj,Yi+1 = yj′ | X1:n)
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Estimated Soft Transition Count

ξi(j, j′) = P(Yi = yj,Yi+1 = yj′ | X1:n)

αi(j) = P(X1:i,Yi = yj)

βi+1(j′) = P(Xi+2:n | Yi+1 = yj′)

αi(j)βi+1(j′) = P(X1:i,Yi = yj)P(Xi+2:n | Yi+1 = yj′)

What is missing to combine the above into a joint probability
distribution?

P(Yi+1 = yj′ | Yi = yj,X1:n) = P(Yi+1 = yj′ | Yi = yj)

P(Xi+1 | Yi+1 = yj′ ,Yi = yj,X1:n) = P(Xi+1 | Yi+1 = yj′)

ξi(j, j′) =
αi(j)βi+1(j′)P(Yi+1 = yj′ | Yi = yj)P(Xi+1 | Yi+1 = yj′)

P(X1:n)
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Estimated Soft Transition Count
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Training HMMs with EM
• E-step: compute the forward-backward probability γ and the soft

transition probability ξ.
• M-step: update the model parameters based on the expected counts.

P(Y1 = yj) =
∑m

i=1 γ
(i)
1 (j)

m

P(Yi = yj | Yi−1 = yℓ) =
∑m

i=1 ∑ni−1
t=1 ξ

(i)
t (ℓ, j)

∑m
i=1 ∑ni−1

t=1 γ
(i)
t (ℓ)

P(Xi = xj | Yi = yℓ) =
∑m

i=1 ∑ni
t=1 γ

(i)
t (ℓ)I(Xt = xj)

∑m
i=1 ∑ni

t=1 γ
(i)
t (ℓ)

The EM algorithm is guaranteed to converge to a local maximum
of the likelihood function.
The Baum-Welch algorithm is a special case of the EM algorithms.
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Semi-Supervised Learning of HMMs

If we have a small amount of labeled data and a large amount of
unlabeled data, we can use the semi-supervised learning
approach.

Estimate the model parameters with the labeled data, then use the
EM algorithm to estimate the model parameters with the
unlabeled data.
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Complexity Analysis

• The Viterbi algorithm:

time complexity O(nk2) and space complexity
O(nk).

F[i, j] = max
yℓ

F[i − 1, ℓ]P(Yi = yj | Yi−1 = yℓ)P(Xi | Yi = yj)

• The forward-backward algorithm:

time complexity O(nk2) and space
complexity O(nk).

αi(j) =
k
∑
j′=1

αi−1(j′)P(Xi = xi | Yi = yj)P(Yi = yj | Yi−1 = yj′)

βi(j) =
k
∑
j′=1

βi+1(j′)P(Xi+1 = xi+1 | Yi+1 = yj′)P(Yi+1 = yj′ | Yi = yj)
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Next

Conditional Random Fields
Sequence Labeling with Neural Networks
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