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Recap: Language Models

Autoregressive language modeling (e.g., GPT, Radford et al.,
2018):

’ The cat is H Model H cute.
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Recap: Language Models

Autoregressive language modeling (e.g., GPT, Radford et al.,
2018):

’ The cat is }—>’ Model }—>’ cute. ‘

Masked language modeling (BERT, Devlin et al., 2019):

’ The [MASK] is cute. H Model H cat ‘
| The [MASK] [MASK] cute. |—»] Model |—{ cat,is |
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Masked Language Models

Bidirectional Encoder Representations from Transformers (BERT,
Devlin et al., 2019):

NSP Mask LM Mask LM

Masked Sentence A Masked Sentence B

Unlabeled Sentence A and B Pair
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Masked Language Models

Bidirectional Encoder Representations from Transformers (BERT,
Devlin et al., 2019):

NSP Mask LM Mask LM

® Two (random) sentences.

Masked Sentence A Masked Sentence B

Unlabeled Sentence A and B Pair
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Masked Language Models

Bidirectional Encoder Representations from Transformers (BERT,
Devlin et al., 2019):

NSP Mask LM Mask LM
@«

*
, ® Two (random) sentences.
® Two objectives:

BERT ® Masked LM.
® Next sentence prediction

- ElE=lE]- & (NSP).

Masked Sentence A Masked Sentence B

Unlabeled Sentence A and B Pair
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Masked Language Models

Bidirectional Encoder Representations from Transformers (BERT,
Devlin et al., 2019):

NSP Mask LM Mask LM
@«

®
® Two (random) sentences.

® Two objectives:

BERT ® Masked LM.
® Next sentence prediction

- ElE=lE]- & (NSP).

® Two special tokens:

® [CLS]: classification token.

Masked Sentence A Masked Sentence B ® [SEP] : Separator token.

Unlabeled Sentence A and B Pair
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Pretraining Objectives

® Masked LM: given a sentence, mask some tokens and predict them.



Masked Language Models Sequence Labeling with HMMs HMMs: Inference HMMs: Training
00000 000000 0000 0000000000

Pretraining Objectives

® Masked LM: given a sentence, mask some tokens and predict them.
® A portion (15%) of tokens are replaced with [MASK].
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Pretraining Objectives

® Masked LM: given a sentence, mask some tokens and predict them.
® A portion (15%) of tokens are replaced with [MASK].
® Predict masked tokens using the output of the model.
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Pretraining Objectives

® Masked LM: given a sentence, mask some tokens and predict them.
® A portion (15%) of tokens are replaced with [MASK].
® Predict masked tokens using the output of the model.

The cat [MASK] cute
[ wi [ [ we | [ ws |[ ws |
A4 A4 \ 4 \ 4
up [[uw [ us |[ u

K'Q
wi,...,ws — K, QV U = Vsoftmax | —
Vd
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Pretraining Objectives

® Masked LM: given a sentence, mask some tokens and predict them.
® A portion (15%) of tokens are replaced with [MASK].
® Predict masked tokens using the output of the model.

The cat [MASK] cute
[ w1 [ [w2 | [ ws || ws ]
A4 A4 \ 4 \ 4
u; [ w —| |_ us | us

w W, K Q Vv U = Vsoftma () u is
awg — Ko Q, X — i
1 \/8 3
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Pretraining Objectives

® Next sentence prediction (NSP): given two sentences, predict if
they are consecutive or not.
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Pretraining Objectives

® Next sentence prediction (NSP): given two sentences, predict if
they are consecutive or not.
Underlying hypothesis: understanding of sentence relations makes
better general-purpose sentence representation.
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Pretraining Objectives

® Next sentence prediction (NSP): given two sentences, predict if
they are consecutive or not.
Underlying hypothesis: understanding of sentence relations makes
better general-purpose sentence representation.
Approach: binary classification with the [CLS] token representation.

NSP Mask LM Mask LM

*

BERT

el [ElE=lE]. &

Masked Sentence A Masked Sentence B

Unlabeled Sentence A and B Pair
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Pretraining Objectives

® Next sentence prediction (NSP): given two sentences, predict if
they are consecutive or not.
Underlying hypothesis: understanding of sentence relations makes
better general-purpose sentence representation.
Approach: binary classification with the [CLS] token representation.

NSP Mask LM Mask LM
*

*

BERT

RoBERTa (Liu et al., 2020): no
NSP, larger batch size, more data,

~ (B ](Ee)le ] [&] more training steps.

Works better than BERT.

Masked Sentence A Masked Sentence B

Unlabeled Sentence A and B Pair
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The Special Tokens: [CLS] and [SEP]

® [SEP]: the separator token indicating sentence boundaries.
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The Special Tokens: [CLS] and [SEP]

® [SEP]: the separator token indicating sentence boundaries.
® [CLS]: the classification token.
® The output of the [CLS] token is used for next-sentence prediction.
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The Special Tokens: [CLS] and [SEP]

® [SEP]: the separator token indicating sentence boundaries.
® [CLS]: the classification token.
® The output of the [CLS] token is used for next-sentence prediction.

These tokens can be renamed with whatever you like.
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The Special Tokens: [CLS] and [SEP]

Masked Language Models
000000

® [SEP]: the separator token indicating sentence boundaries.

® [CLS]: the classification token.
® The output of the [CLS] token is used for next-sentence prediction.

These tokens can be renamed with whatever you like.
There is no specific reason why [CLS] is at the beginning.
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After Pretraining

® Feature-based transfer learning: instead of manually designed
features, use a pre-trained model as feature extractor.


https://huggingface.co/docs/transformers/en/model_doc/bert
https://huggingface.co/docs/transformers/en/model_doc/bert
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After Pretraining

® Feature-based transfer learning: instead of manually designed
features, use a pre-trained model as feature extractor.
Train another model with the extracted features.
All layers of the pre-trained model are frozen.


https://huggingface.co/docs/transformers/en/model_doc/bert
https://huggingface.co/docs/transformers/en/model_doc/bert
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After Pretraining

® Feature-based transfer learning: instead of manually designed
features, use a pre-trained model as feature extractor.
Train another model with the extracted features.
All layers of the pre-trained model are frozen.

® Fine-tuning: Keep the model architecture and weights, but continue
training on a new task.
The model weights can be updated during fine-tuning.


https://huggingface.co/docs/transformers/en/model_doc/bert
https://huggingface.co/docs/transformers/en/model_doc/bert

s: Inference

Masked Language Models

e Labeling with HMMs
O0000e )

After Pretraining

® Feature-based transfer learning: instead of manually designed
features, use a pre-trained model as feature extractor.
Train another model with the extracted features.
All layers of the pre-trained model are frozen.

® Fine-tuning: Keep the model architecture and weights, but continue
training on a new task.
The model weights can be updated during fine-tuning.

Practical convention: use the [CLS] token output as text
representation for classification tasks.


https://huggingface.co/docs/transformers/en/model_doc/bert
https://huggingface.co/docs/transformers/en/model_doc/bert
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After Pretraining

® Feature-based transfer learning: instead of manually designed
features, use a pre-trained model as feature extractor.
Train another model with the extracted features.
All layers of the pre-trained model are frozen.

® Fine-tuning: Keep the model architecture and weights, but continue
training on a new task.
The model weights can be updated during fine-tuning.

Practical convention: use the [CLS] token output as text
representation for classification tasks.

| strongly encourage you to try out the BERT model in the
Hugging Face Transformers library if you haven't done so! https:
//huggingface.co/docs/transformers/en/model_doc/bert


https://huggingface.co/docs/transformers/en/model_doc/bert
https://huggingface.co/docs/transformers/en/model_doc/bert
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Sequence Labeling: The Task

Input: The cat is cute
Output: DT NN VBZ JJ

HMMs: Training
0000000000

Sequence labeling: assign a label to each token in a sequence.
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Sequence Labeling: The Task

Input: The cat is cute
Output: DT NN VBZ JJ

HMMs: Training
0000000000

Sequence labeling: assign a label to each token in a sequence.

Taking part-of-speech (POS) tagging as an example:
classify(s) = arg max score(s, y; ®)
y

POS-Tag(s) = arg maxscore(s, y; ©)
y
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Sequence Labeling: The Task

Input: The cat is cute
Output: DT NN VBZ JJ

Sequence labeling: assign a label to each token in a sequence.
Taking part-of-speech (POS) tagging as an example:
classify(s) = arg max score(s, y; ©)
POS-Tag(s) = arg max score(s, y; ©)

Key difference from classification: the output is a sequence, not a
single label.
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Recap: Independence and Conditional Independence

Two random variables X and Y are independent if for all x and y,

PX=xY=y)=P(X=x)P(Y=y).
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Recap: Independence and Conditional Independence

Two random variables X and Y are independent if for all x and y,
PX=xY=y)=P(X=x)P(Y=y).

Two random variables X and Y are conditionally independent given
Z if for all x, y, and z,

PX=xY=y|Z=2)=PX=x|Z=2z)P(Y=y|Z=2)
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Recap: Independence and Conditional Independence

Two random variables X and Y are independent if for all x and y,
PX=xY=y)=P(X=x)P(Y=y).

Two random variables X and Y are conditionally independent given
Z if for all x, y, and z,

PX=xY=y|Z=2)=PX=x|Z=2z)P(Y=y|Z=2)

We write this as X L Y| Z



Recap: Independence and Conditional Independence

Two random variables X and Y are independent if for all x and y,
PX=xY=y)=P(X=x)P(Y=y).

Two random variables X and Y are conditionally independent given
Z if for all x, y, and z,

PX=xY=y|Z=2)=PX=x|Z=2z)P(Y=y|Z=2)
We write this as X L Y| Z

Example: height and vocabulary size are (or at least should be)
conditionally independent given age.

Sequence Labeling with HMMs HMMs: Inference HMMs: Trainir
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Markov Assumption and Markov Chain

Recap: the Markov assumption in n-gram language models implies
an (n-1)-th order Markov assumption.

P(wi | wi,...,wi—1) = P(w; | Wi—pt1,..., Wi—1)
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Markov Assumption and Markov Chain
Recap: the Markov assumption in n-gram language models implies
an (n-1)-th order Markov assumption.

P(w; | wa,...,wi1) = P(W; | Wi—ny1, ..., wi1)
First-order Markov assumption:

P(W,' | Wi, ..., W,'_1) = P(W,' | W,'_1)
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Markov Assumption and Markov Chain
Recap: the Markov assumption in n-gram language models implies
an (n-1)-th order Markov assumption.
P(w; | wi,...,wi—1) = P(w; | Wi—pt1,..., wi—1)
First-order Markov assumption:
P(W,' ‘ Wi, ..., W,'_1) = P(W,' | W,'_1)

A Markov chain is a sequence of random variables X7, Xo,..., X,
satisfies the Markov assumption: X; L X;_o,..., X1 | Xi—1.
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Markov Assumption and Markov Chain

Recap: the Markov assumption in n-gram language models implies
an (n-1)-th order Markov assumption.

P(w; | wi,...,wi—1) = P(w; | Wi—pt1,..., wi—1)
First-order Markov assumption:

P(W,' | Wi, ..., W,'_1) = P(W,' | W,'_1)

A Markov chain is a sequence of random variables X7, Xo,..., X,
satisfies the Markov assumption: X; L X;_o,..., X1 | Xi—1.

Hidden Markov Models (HMMs) extend the Markov
assumption to a set of hidden states.

Note: the hidden states here is not the same as the hidden
layer/stats in neural networks.
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Markov Assumption and Markov Chain

Recap: the Markov assumption in n-gram language models implies
an (n-1)-th order Markov assumption.
P(w; | wi,...,wi—1) = P(w; | Wi—pt1,..., wi—1)

First-order Markov assumption:

P(W,' ‘ Wi, ..., W,'_1) = P(W,' | W,'_1)

A Markov chain is a sequence of random variables X7, Xo,..., X,
satisfies the Markov assumption: X; L X;_o,..., X1 | Xi—1.

Hidden Markov Models (HMMs) extend the Markov
assumption to a set of hidden states.

Note: the hidden states here is not the same as the hidden
layer/stats in neural networks.

A good starting point of learning probabilistic graphical models.
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Hidden Markov Models (HMMs)

Modeling the joint probability of the observed sequence of
variables Xi,..., X, and the hidden sequence of variables
Yi, ..., Yo

n n

P(Xt,.oo Xo, Yaoon Ya) = PO T POYi | Yie) [T POX | Y2)
=2 i=1
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Hidden Markov Models (HMMs)

Modeling the joint probability of the observed sequence of

variables Xi,..., X, and the hidden sequence of variables
Yi, ..., Yo
n n
P(X1,.... Xn, Y1,..., Yn) = P(Yl)HP(Y,- | Y,-_l)HP(X,- | 'Y)
i=2 i=1
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Hidden Markov Models (HMMs)

Modeling the joint probability of the observed sequence of

variables Xi,..., X, and the hidden sequence of variables
Yi, ..., Yo
n n
P(X1, ..., Xn, Y1,..., Yn) = P(Yl)HP(Y,- | Y,-_l)HP(X,- | Y:)
i=2 i=1

An instantiation of Bayesian networks: representing conditional
dependency with a directed acyclic graph (DAG).
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Conditional Independence in HMMs



Masked Language Models Sequence Labeling with HMMs HMMs: Inference HMMs: Training
0000e0 [o]e]

Conditional Independence in HMMs

Intuitive interpretation: if the given variable Z is removed from the
graph, two variables X and Y are conditionally independent if they
are disconnected.
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Conditional Independence in HMMs

Intuitive interpretation: if the given variable Z is removed from the
graph, two variables X and Y are conditionally independent if they
are disconnected.

Yt 1 ’ Yt—l
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Conditional Independence in HMMs

Intuitive interpretation: if the given variable Z is removed from the
graph, two variables X and Y are conditionally independent if they
are disconnected.

YtJ_ Yj_-_2,...,Y]_,Xt_l,Xt_2,...,X]_ ’ Yt—l
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Conditional Independence in HMMs

Intuitive interpretation: if the given variable Z is removed from the
graph, two variables X and Y are conditionally independent if they
are disconnected.

YtJ_ Yj_-_2,...,Y]_,Xt_l,Xt_2,...,X]_ ’ Yt—l
X L | Ve
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Conditional Independence in HMMs

Intuitive interpretation: if the given variable Z is removed from the
graph, two variables X and Y are conditionally independent if they
are disconnected.

YtJ_ Yj_-_2,...,Y]_,Xt_l,Xt_2,...,X]_ ’ Yt—l
Xt-J_ an"'1Yt+1r Yt_]_,...,Y]_,Xn,...,Xt_l,_]_,Xt_l,...,X]_ ’ Yt
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More Background: Bayesian Networks

In a Bayesian network, the direction of arcs does not necessarily
have specific meanings.

O—» WO

These two Bayesian networks represents the following, respectively.

PIX,Y) = PX)P(Y|X)  P(X.Y) = P(Y)P(X]Y)
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More Background: Bayesian Networks

In a Bayesian network, the direction of arcs does not necessarily
have specific meanings.

O—» WO

These two Bayesian networks represents the following, respectively.

PIX,Y) = PX)P(Y|X)  P(X.Y) = P(Y)P(X]Y)
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More Background: Bayesian Networks

In a Bayesian network, the direction of arcs does not necessarily
have specific meanings.

O—» WO

These two Bayesian networks represents the following, respectively.
PX.Y) = PX)P(Y | X)  P(X.Y) = P(Y)P(X]Y)

However, it's always intuitive to construct Bayesian networks with
causal relationships in mind.
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Problem Formulation

Suppose with are given a pretrained HMM with
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Problem Formulation

Suppose with are given a pretrained HMM with

® The transition probabilities P(Y; | Y;_1), shared across time steps

Y1 > Y, P
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Problem Formulation

Suppose with are given a pretrained HMM with

® The transition probabilities P(Y; | Y;_1), shared across time steps
® The emission probabilities P(X; | Y;), shared across time steps
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Problem Formulation

Suppose with are given a pretrained HMM with

® The transition probabilities P(Y; | Y;_1), shared across time steps
® The emission probabilities P(X; | Y;), shared across time steps
® The initial state distribution P(Y1)
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Problem Formulation

Suppose with are given a pretrained HMM with

® The transition probabilities P(Y; | Yj_1), shared across time steps
® The emission probabilities P(X; | Y;), shared across time steps

® The initial state distribution P(Y7)

® The observation sequence X1, ..., X,

What is the most likely sequence of hidden states Yi,..., Y;?
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Problem Formulation

Suppose with are given a pretrained HMM with

® The transition probabilities P(Y; | Yj_1), shared across time steps
® The emission probabilities P(X; | Y;), shared across time steps

® The initial state distribution P(Y7)

® The observation sequence X1, ..., X,

What is the most likely sequence of hidden states Yi,..., Y;?

arg  max, P(Yi,.... Yo | X1,..., Xn)

1oeeey
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Inference with HMMs

Goal :arg max P(Y1,...,Yn| X1,..., Xp)

Y10 Yn
arg max P(Yy,...,Yn X1,..., Xn)
1seees Tn
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Inference with HMMs

Goal :arg max P(Y1,...,Yn| X1,..., Xp)

Y10 Yn
arg max P(Yy,...,Yn X1,..., Xn)
1seees Tn

Bruce-force solution: enumerate all possible sequences of hidden
states and compute the joint probability.
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Inference with HMMs

Goal :arg max P(Y1,...,Yn| X1,..., Xp)

Y10 Yn
arg max P(Yy,...,Yn X1,..., Xn)
1seees Tn

Bruce-force solution: enumerate all possible sequences of hidden
states and compute the joint probability.

The Viterbi algorithm: compute it efficiently with dynamic
programming.
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The Viterbi Algorithm

Goal :arg max P(Yy,...,Yn X1,..., Xp)

LieesTn
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The Viterbi Algorithm

: Inference

Goal :arg max P(Yy,...,Yn X1,..., X,

LieesTn

~—

Forall i=1,....,n and j=1,...,k

Fli,j] = max P(y,...,yie1, Yi=yjp X1,.... X))
YireaYi-1

HMMs: Training
0000000000



Masked Language Models Sequence Labeling with HMMs HMMs: Inference HMMs: Training
000000 000000 [e]e] le] 0000000000

The Viterbi Algorithm

Goal :arg max P(Yy,...,Yn X1,..., Xp)
Yi,n Y,

Forall i=1,....,n and j=1,...,k

Fli,j] = max P(y,...,yie1, Yi=yjp X1,.... X))
YireaYi-1

= myaxF[i— LAOP(Yi=y | Yioi=y)P(Xi | Yi=y))
f
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The Viterbi Algorithm (cont.)

This dynamic programming algorithm depends on the conditional
independence.

Fli,j] = mé\y)‘(l Plyi,....yie1, Yi=yj, X1, ..., Xi)
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The Viterbi Algorithm (cont.)

This dynamic programming algorithm depends on the conditional
independence.

Fli,j] = jmax. Plyr,....yic1, Yi=yp X1, ..., X))
= my?x P(yt,....yir1 = yo. X1, ..., Xi1)
P( yj|y1,...,Y,-,1:yg,Xl,...,X,-,l)
P(Xi|y1,....Yicr=ye. Yi=y;p X1,..., Xi-1)
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The Viterbi Algorithm (cont.)

This dynamic programming algorithm depends on the conditional
independence.

F[IYJ] - yer.].a}z‘(,]_ P(y].l . r_yllflr Y - _yjy X].y |X)
= my?x P(y1, ..., Yie1 = Yo, X1, - -+, Xi-1)
P(Y, = yJ | Yi, .-+, Y,;l =Y, X1 ..... X,;l)
P(Xi | y1, .-, Yei=yo. Yi=y, X1, ..., Xi-1)

= max Fli—1LOP(Yi=y;| Y1 =y))P(Xi | Yi=y;)
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Training HMMs with Supervised Data

Suppose we have a set of training data {(x11,)1.1), (x12,%1.2),---,

(Xl,nly)/l,nl)y . (Xm,lv )/m,l)y LI ] (Xm,nmr}/m,nm)}-
m: number of sequences n;: length of the i-th sequence.
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Training HMMs with Supervised Data

Suppose we have a set of training data {(x11,)1.1), (x12,%1.2),---,
(X].,nlr_y].,n]_)r .. (Xm,lv )/m,l)y LI ] (Xm,nmu Ym,nm)}-
m: number of sequences n;: length of the i-th sequence.

We can directly estimate the HMM parameters (i.e., transition,
emission and start probabilities) from the data by counting.

count(y;, )

P(Yl =Y | Yii1 = yﬁ) = COUﬂt(yg)
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Training HMMs with Supervised Data

Suppose we have a set of training data {(x11,)1.1), (x12,%1.2),---,
(X].,nlr_y].,n]_)r .. (Xm,lr )/m,l)y LI ] (Xm,nmu Ym,nm)}-
m: number of sequences n;: length of the i-th sequence.

We can directly estimate the HMM parameters (i.e., transition,
emission and start probabilities) from the data by counting.

count(ye, )
count(yy)

count (s, )
count(yy)

P(Yi=yi | Yic1=y) =

P(Xi=xj|Yi=y) =
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Training HMMs with Supervised Data

Suppose we have a set of training data {(x11,)1.1), (x12,%1.2),---,
(X].,nlr_y].,n]_)r .. (Xm,lr )/m,l)y LI ] (Xm,nmu Ym,nm)}-
m: number of sequences n;: length of the i-th sequence.

We can directly estimate the HMM parameters (i.e., transition,
emission and start probabilities) from the data by counting.

count(ye, )
count(yy)
count (s, )
count(yy)
count(y;
P(Yi=y) = count(yy)

m

P(Yi=yi | Yic1=y) =

P(Xi=xj|Yi=y) =
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HMM Induction

What if the training data is not labeled?
We have a set of training input only

{X1 1, X120 e+ e s XLngs e ooy XLy -+« Xmunp, } -

HMMs: Training
0@00000000
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HMM Induction

What if the training data is not labeled?

We have a set of training input only

{X1 1, X120 e+ e s XLngs e ooy XLy -+« Xmunp, } -

We can still assume the underlying model is an HMM and use the

Expectation-Maximization (EM) algorithm to estimate the
parameters.
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HMM Induction

What if the training data is not labeled?

We have a set of training input only

{X1 1, X120 e+ e s XLngs e ooy XLy -+« Xmunp, } -

We can still assume the underlying model is an HMM and use the

Expectation-Maximization (EM) algorithm to estimate the
parameters.

® Expectation: compute the probability of the hidden states given the
observed data.
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HMM Induction

What if the training data is not labeled?

We have a set of training input only

{X1 1, X120 e+ e s XLngs e ooy XLy -+« Xmunp, } -

We can still assume the underlying model is an HMM and use the
Expectation-Maximization (EM) algorithm to estimate the
parameters.

® Expectation: compute the probability of the hidden states given the
observed data.

® Maximization: update the model parameters based on the expected
counts.
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HMM Induction

What if the training data is not labeled?

We have a set of training input only

{X1 1, X120 e+ e s XLngs e ooy XLy -+« Xmunp, } -

We can still assume the underlying model is an HMM and use the

Expectation-Maximization (EM) algorithm to estimate the
parameters.

® Expectation: compute the probability of the hidden states given the
observed data.

® Maximization: update the model parameters based on the expected
counts.

Also known as the Baum-Welch algorithm.
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Forward Probability

0(,'(]) = P(Xl :Xl,...,X,':X,', Y,:yJ)
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Forward Probability

wi(j)) = P(X1 =x1,.... Xi=x, Yi = y))
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Forward Probability

a,(j) = P(X1 = L Xi=xi, Yi=y;)
k
= ZPXl—Xl,.. ,X,':X;,Y,',lzyjr,y,':yj)
Ji=1

_le I:_)/lel—l:)/_]/!XlYlXI—l)
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Forward Probability
() =PXi=x1,....Xi=x, Y =y)

:ZP(X]_:Xl ..... X’.:Xiv\/iflzyjf,s/i:yj)

k
=Y wa()PX = x| Yi=y)P(Yi=y;| Vi1 =y)

P
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Backward Probability

ﬁ/(J) :P(Xi+1:X;+1,...,Xn:xn| Y,:yj)
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Backward Probability

ﬁ/(]) :P(Xi+1:X;+1,...,Xn:xn| Y,:yj)

K
=Y Biri(/)P(Xip1 = xiv1 | Yr = vy )P(Yr = yy | Yi=))
=
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Forward-Backward Probability

Given & and B, we can compute the forward-backward
probability (i.e., soft count):

a;i(j)Bilj) = P(Xvi, Yi = yj) P(Xis1:n | Yi= ;)
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Forward-Backward Probability

Given & and B, we can compute the forward-backward
probability (i.e., soft count):

a;i(j)Bilj) = P(Xvi, Yi = yj) P(Xis1:n | Yi= ;)
= P(Xlzn: Yi= yJ)
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Forward-Backward Probability

Given & and B, we can compute the forward-backward
probability (i.e., soft count):

a;i(j)Bilj) = P(Xvi, Yi = yj) P(Xis1:n | Yi= ;)
= P(Xtp, Yi= YJ)
< P(Y; = y; | X1:n) = 7i(j)
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Forward-Backward Probability

Given & and B, we can compute the forward-backward
probability (i.e., soft count):

a;i(j)Bilj) = P(Xvi, Yi = yj) P(Xis1:n | Yi= ;)
= P(Xtp, Yi= YJ)

o« P(Y; = y; | X1.n) = 7i())
And also the soft transition count:

gi(j'j/) = P(YI =Y Yi+1 =Yy | Xl:n)
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Estimated Soft Transition Count

Ci(jvj/) 'D(YI =Y Yi—i—l =Yy ’ Xl:n)
wi(j) = P(Xwi, Yi=yj)
,BH—l(j,) = P(Xi+2:n | Yi—l—l = yJ’)

HMMs: Training
00000e0000
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Estimated Soft Transition Count

(JJ./):'D( :+1—)/J|X1n)
0‘1(./) = P(Xl 0 Yi= y_/)
ﬁl+1(j,) = P(Xl+2n | Yit1 = .y_])
2i(j)Bir1(f) = P(Xwi, Yi = y)) P(Xiy2:n | Yie1 = yy)

HMMs: Training
00000e0000
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Estimated Soft Transition Count

i J
a;(j) =
:Bl+1(
a;(j)Bir1(f

P(Y; = Y, Yi—i—l =Yy | Xl:n)

(
(X]. I \/I _yj)
= P(Xiy2un | Yie1 = yp)

\./\/\./\./
"U

distribution?

= P(Xv.i, Yi=y)) P(Xiv2:n | Yig1 = yp)

What is missing to combine the above into a joint probability

HMMs: Training
00000e0000
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Estimated Soft Transition Count

(./J./):'D( :+1—)/J|X1n)
ai(j) = P(Xl,, Yi=y))
:Bl+1(./) 'D( l+2n| Yl+1—yj)
2i(j)Bir1(/) = P(Xwi, Yi = yj) P(Xit2:n | Yiz1 = yy)

What is missing to combine the above into a joint probability
distribution?

P(Yiii=yy | Yi=yp Xun) = P(Yir =y | Yi=y)
P(Xix1 | Yir1 = vy, Yi=yj Xun) = P(Xiv1 | Yier = yyp)
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Estimated Soft Transition Count

(./J./>:'D( :+1—)/J|X1n)
wi(j) = P(Xi, Yi = yj)
:Bl+1(./) 'D( l+2n| Yl+1—yj)
2i(j)Bir1(/) = P(Xwi, Yi = yj) P(Xit2:n | Yiz1 = yy)

What is missing to combine the above into a joint probability
distribution?

P(Yiii=yy | Yi=yp Xun) = P(Yir =y | Yi=y)
P(Xix1 | Yir1 = vy, Yi=yj Xun) = P(Xiv1 | Yier = yyp)

GG = ;i(/)Bi+1(J/)P(Yip1 = yjpi)z:n) Yj)P(Xit1 | Yie1 = yy)
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Training HMMs with EM

® E-step: compute the forward-backward probability 7 and the soft
transition probability ¢.
® M-step: update the model parameters based on the expected counts.

m ()
Py =y) = U
12 —1 ét (E J)

P(Yi=yj| Yiri=y) =

Em 1 Et—l ')/t ( )
Zl—l Zt_l /Yt ( )]I(Xt - Xj)
1l ’Yt ( )

PXi= x| Yi=y) =
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Training HMMs with EM

® E-step: compute the forward-backward probability 7 and the soft
transition probability ¢.
® M-step: update the model parameters based on the expected counts.

m ()

m

Ty Ct (5 J)
Em12t_1 ’Yt ( )
PRED B 'Yt ( )]I(Xt_xj)
rp Dl 1’Yt ( )

The EM algorithm is guaranteed to converge to a local maximum
of the likelihood function.

P(Y1=y)) =

P(Yi=yj| Yiri=y) =

PXi= x| Yi=y) =
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Training HMMs with EM

® E-step: compute the forward-backward probability 7 and the soft
transition probability ¢.
® M-step: update the model parameters based on the expected counts.

PV, = y) = ZlT%()
l,
P(YVi= 33| Vi1 = y) = S e 1@( J)
121‘—1 ')’t()
PXi=x | Yi=y) = T e (L )]I(Xt_xj)
1Zt 17t()

The EM algorithm is guaranteed to converge to a local maximum
of the likelihood function.

The Baum-Welch algorithm is a special case of the EM algorithms.
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Semi-Supervised Learning of HMMs

If we have a small amount of labeled data and a large amount of
unlabeled data, we can use the semi-supervised learning
approach.
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Semi-Supervised Learning of HMMs

If we have a small amount of labeled data and a large amount of
unlabeled data, we can use the semi-supervised learning
approach.

Estimate the model parameters with the labeled data, then use the
EM algorithm to estimate the model parameters with the
unlabeled data.
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Complexity Analysis
® The Viterbi algorithm:

Fli ) = max Fli— 1, 0P(Y; = ;| Yiex = )P | Y= %)
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Complexity Analysis
® The Viterbi algorithm: time complexity O(nk?) and space complexity
O(nk).

Fli ) = max Fli— 1, 0P(Y; = ;| Yiex = )P | Y= %)
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Complexity Analysis

® The Viterbi algorithm: time complexity O(nk®) and space complexity
O(nk).

Fli.j) = max Fli— L AP(Y; = | Yier = y)POX | Vi = )

® The forward-backward algorithm:

k
wi()) = Y wia(VPXi=xi | Yi=y)P(Yi=y; | Vi1 = yp)
j=1

k
.Bi(f) = Z ,Bi+1(JJ)P(Xi+1 =Xjy1 | Y1 = yj’)P(Yiﬂ =Yy | Y= )/j)
=1
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Complexity Analysis
® The Viterbi algorithm: time complexity O(nk®) and space complexity
O(nk).

Fli.j) = max Fli— L AP(Y; = | Yier = y)POX | Vi = )

® The forward-backward algorithm: time complexity O(nk?) and space
complexity O(nk).

k
wi()) = Y wia(VPXi=xi | Yi=y)P(Yi=y; | Vi1 = yp)
j=1

k
.Bi(f) = Z ,Bi+1(JJ)P(Xi+1 =Xjy1 | Y1 = yj’)P(YiH =Yy | Y= )/j)
=1
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Next

Conditional Random Fields

Sequence Labeling with Neural Networks

HMMs: Training
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