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Drawbacks of HMMs

Y1 Y2 Y3 Y4

X1 X2 X3 X4

Each Xi and Yi is a discrete random variable, which does not allow
for rich feature representations.
For example, what if we’d like to consider morphological features
of words?
This motivates the use of conditional random fields (CRFs).
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Conditional Random Fields
Laferty et al. (2001) introduced CRFs as a discriminative model
for sequence labeling.
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Conditional Random Fields
• Model the probability distribution P(Y | X) with an undirected graph.

Variables are partitioned into two sets: X (input) and Y (output).
• A special case of undirected probabilistic graphical models, which are

also known as Markov networks.
The Markov property: a random variable is conditionally independent
of all others given its neighbors.

Y1 Y2Y2 Y3 Y4

X1 X2 X3 X4

P(Y2 | Y1,Y3,Y4,X1:4) = P(Y2 | Y1,Y3,X1:4)
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(Linear) Conditional Random Fields
Recap: in a linear model, we score a input feature vector x with

score(x;w) =
n
∑
i=1

wixi.

Y1 Y2 Y3 Y4

X1 X2 X3 X4

In a linear CRF, we augment the linear model with global features
F(X,Y) in the form of local feature sum:

Fk(X,Y) =
n
∑
i=1

fk(yi−1, yi,X, i).

These features are to be used with the linear model to score the
output sequence.
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Example Features in Linear CRF

Each feature fk is a function of the previous and current labels, the
input sequence, and the current position

fk(yi−1, yi,X, i).

For example, in part-of-speech tagging, we might have features like

f(yi−1, yi,X, i) =
{

1 if yi−1 = NOUN and yi = VERB
0 otherwise

f(yi−1, yi,X, i) =
{

1 if yi = DET and xi+1 = cat
0 otherwise

For simplicity, we usually assume that the features are binary.
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CRF: Formulation
A CRF defines a probability distribution over the output sequence
Y given the input sequence X:

P(Y | X) = 1
Z(X) exp

(
K
∑
k=1

wkFk(X,Y)
)

=
1

Z(X) exp
(

K
∑
k=1

wk
n
∑
i=1

fk(yi−1, yi,X, i)
)

The partition function Z(X) is a normalization term that ensures
the distribution sums to 1:

Z(X) = ∑
Y′

exp

(
K
∑
k=1

wkFk(X,Y′)

)
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Inference for CRFs
Finding the most likely sequence of labels Y given the input X:

argmax
Y

P(Y | X) = argmax
Y

1
Z(X) exp

(
K
∑
k=1

wkFk(X,Y)
)

= argmax
Y

K
∑
k=1

wkFk(X,Y)

= argmax
Y

K
∑
k=1

wk
n
∑
i=1

fk(yi−1, yi,X, i)

= argmax
Y

n
∑
i=1

K
∑
k=1

wkfk(yi−1, yi,X, i)

This is simply a variation of the Viterbi algorithm.
Hint: define F[i, j] as the score of the best sequence ending at
position i and Yi taking value j.
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Training CRFs

CRF training is essentially maximum (log) likelihood estimation:

w∗ = argmax
w ∑

(X,Y)∈D
logP(Y | X;w)

L(w) = ∑
(X,Y)∈D

− logP(Y | X;w)

= ∑
(X,Y)∈D

−
(

K
∑
k=1

wkFk(X,Y)− logZ(X)
)

The gradient can be computed with the forward-backward
algorithm, similarly to HMMs.
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Sequence Labeling with Neural Networks

• Neural networks have been widely used for sequence labeling tasks.
• Bi-LSTM + CRF was a popular architecture for sequence labeling.

However, pretrained neural feature + simple per-position classifier
approach could give a competitive performance (Shi et al., 2021).
Intuition? Powerful pretrained models already contain (almost) all
information learned by graphical models.
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The Neural CRF Layer

Y1 Y2 Y3 Y4

X1 X2 X3 X4

The emission score at position i, e-score(i) = NN(X) ∈ RC, is
computed by a per-position neural scorer (C: number of classes).
Note: not to be confused with the emission probability in HMMs.
The transition score between Yi and Yi+1(∈ RC×C), is stored as
parameters.

P(Y | X) = 1
Z(X) exp

(
n
∑
i=1

e-score(i)yi +
n−1
∑
i=1

t-score(yi, yi+1)

)
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The Neural CRF Layer: Partition Function
Z(X) can be computed with the forward algorithm:

Z(X) =∑
Y′

exp

(
n
∑
i=1

e-score(i)y′i +
n−1
∑
i=1

t-score(y′i , y′i+1)

)

=∑
y1

. . . ∑
yn

exp

(
n
∑
i=1

e-score(i)yi +
n−1
∑
i=1

t-score(yi, yi+1)

)
=∑

y1

exp (e-score(1)y1) ·(
∑
y2

. . . ∑
yn

exp

(
n
∑
i=2

e-score(i)yi +
n−1
∑
i=1

t-score(yi, yi+1)

))

Training objective: maximize the log-likelihood of training data.
With automatic differentiation, compute P(Y | X) is everything!
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Next

Syntax and parsing
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