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Each X; and Y; is a discrete random variable, which does not allow
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For example, what if we'd like to consider morphological features
of words?
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Drawbacks of HMMs

Each X; and Y; is a discrete random variable, which does not allow
for rich feature representations.

For example, what if we'd like to consider morphological features
of words?

This motivates the use of conditional random fields (CRFs).
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Conditional Random Fields

Laferty et al. (2001) introduced CRFs as a discriminative model
for sequence labeling.

Conditional Random Fields: Probabilistic Models
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Abstract mize the joint likelihood of training examples. To define
a joint probability over observation and label sequences,
a generative model needs to enumerate all possible ob-
servation sequences, typically requiring a representation
in which observations are task-appropriate atomic entities,
such as words or nucleotides. In particular, it is not practi-
cal to represent multiple interacting features or long-range
di dencies of the oby ions, since the inft prob-
lem for such models is intractable.

We present conditional random fields, a frame-
work for building probabilistic models to seg-
ment and label sequence data. Conditional ran-
dom fields offer several advantages over hid-
den Markov models and stochastic

for such tasks, including the ability to relax
strong independence assumptions made in those
models. Conditional random fields also avoid
a fundamental limitation of maximum entropy This difficulty is one of the main motivations for looking at
Markov models (MEMMs) and other discrimi- conditional models as an alternative. A conditional model
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® Model the probability distribution P(Y'| X) with an undirected graph.
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Conditional Random Fields

® Model the probability distribution P(Y'| X) with an undirected graph.
Variables are partitioned into two sets: X (input) and Y (output).

® A special case of undirected probabilistic graphical models, which are
also known as Markov networks.
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Conditional Random Fields

® Model the probability distribution P(Y'| X) with an undirected graph.
Variables are partitioned into two sets: X (input) and Y (output).
® A special case of undirected probabilistic graphical models, which are

also known as Markov networks.
The Markov property: a random variable is conditionally independent

of all others given its neighbors.

F)( ’/é | )/ly \(3, »44, )(i:4) =



| Sequence Labeling

Conditional Random Fields
00@00000

Conditional Random Fields

® Model the probability distribution P(Y'| X) with an undirected graph.
Variables are partitioned into two sets: X (input) and Y (output).
® A special case of undirected probabilistic graphical models, which are

also known as Markov networks.
The Markov property: a random variable is conditionally independent

of all others given its neighbors.

P(Y2 | Y1, Y3, Ya, X1a) = P(Y2 | Y1, Y3, X1:4)
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(Linear) Conditional Random Fields

Recap: in a linear model, we score a input feature vector x with

n
score(x; w) = Z WiX;.
i=1
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(Linear) Conditional Random Fields

Recap: in a linear model, we score a input feature vector x with

n
score(x; w) = Z WiX;.
i=1

In a linear CRF, we augment the linear model with global features
F(X,Y) in the form of local feature sum:

n
Fu(X,Y) =Y filyi1, yi X, ).
i=1
These features are to be used with the linear model to score the
output sequence.
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Example Features in Linear CRF

Each feature fy is a function of the previous and current labels, the
input sequence, and the current position

fi(Yie1, yi X, ).
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1 if y,; = NOUN and y; = VERB
0 otherwise

fyi-1, yin X, i) = {
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Example Features in Linear CRF

Each feature fy is a function of the previous and current labels, the
input sequence, and the current position

fe(Yi-1, yi, X, ).
For example, in part-of-speech tagging, we might have features like

1 if y,; = NOUN and y; = VERB
0 otherwise

fyi-1, yin X, i) = {

. 1 if yy = DET and xj1 = cat
i1, yin X i) = { Y i

0 otherwise

For simplicity, we usually assume that the features are binary.
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CRF: Formulation

A CRF defines a probability distribution over the output sequence
Y given the input sequence X:

K
P(Y|X) = Z(lx) exp (k; wiF(X y))

1

= m exp (f szn: fie(yi-1, yin X, i>>

k=1 i=1
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CRF: Formulation

A CRF defines a probability distribution over the output sequence
Y given the input sequence X:

K
P(Y|X) = Z(1X) exp (;;1 wiFi(X, Y)>
1 AT ;
= m exp (Z WkZ fie(yi-1, yin X, ’>>

k=1 i=1

The partition function Z(X) is a normalization term that ensures
the distribution sums to 1:

Z(X) =) exp (f wiFr(X, V))
Y k=1
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Inference for CRFs
Finding the most likely sequence of labels Y given the input X:

arg max P(Y| X)
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arg max P(Y| X) =arg max 700 exp (;;1 wiF (X, Y))
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Inference for CRFs
Finding the most likely sequence of labels Y given the input X:

1 K
arg max P(Y| X) =arg max 700 exp (;;1 wiF (X, Y))
K
= Fu(X
argm\zjxkg:1 wiFr(X,Y)

K n
=argmax ) wi Y fi(yi-1, yi X, i)
Y o1 =t
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Inference for CRFs
Finding the most likely sequence of labels Y given the input X:

1 K
arg max P(Y| X) =arg max 700 exp (;;1 wiF (X, Y))
K
= Fr(X
arg m\zjxkg:1 wiFr(X,Y)
K n
= arg max Z Wi Z fie(yi-1, yin X, i)

k=1 i=1

n K
= arg max Z Z kak(y;—ly Yi X, i)
Y iSlk=l
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Inference for CRFs
Finding the most likely sequence of labels Y given the input X:

1 K
arg max P(Y| X) =arg max 700 exp (;;1 wiF (X, Y))
K
= Fu(X
argm\zjxkg:1 wiFr(X,Y)

K n
— arg max Y wie ) flyie1, i X, i)

k=1 i=1
n K
=argmax ) Y wifu(yi-1, yin X, i)
Y Slic

This is simply a variation of the Viterbi algorithm.

Hint: define F[i, j] as the score of the best sequence ending at
position i and Y; taking value j.
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Training CRFs

CREF training is essentially maximum (log) likelihood estimation:

* e -
w" = argmax Y log P(Y] X;w)
(X, Y)eD
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CREF training is essentially maximum (log) likelihood estimation:
* .
w" = argmax 2 log P(Y'| X;w)
(X.Y)eD

Lw)= Y —logP(Y]|X w)
(X,Y)eD

Y (ZWkaxm log Z( ))

(X,Y)eD k=
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Training CRFs

CREF training is essentially maximum (log) likelihood estimation:

*_ .
w" = argmax 2 log P(Y'| X;w)

(X.Y)eD
Lw)= Y —logP(Y]|X w)
(X,Y)eD
= Z (Z Wka X Y) IogZ( ))
(X,Y)eD k=

The gradient can be computed with the forward-backward
algorithm, similarly to HMMs.
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Sequence Labeling with Neural Networks

® Neural networks have been widely used for sequence labeling tasks.
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® Bi-LSTM + CRF was a popular architecture for sequence labeling.
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® Neural networks have been widely used for sequence labeling tasks.
® Bi-LSTM + CRF was a popular architecture for sequence labeling.

However, pretrained neural feature + simple per-position classifier
approach could give a competitive performance (Shi et al., 2021).

Intuition?



Neural Sequence Labeling
€000

Sequence Labeling with Neural Networks

® Neural networks have been widely used for sequence labeling tasks.
® Bi-LSTM + CRF was a popular architecture for sequence labeling.

However, pretrained neural feature + simple per-position classifier
approach could give a competitive performance (Shi et al., 2021).

Intuition? Powerful pretrained models already contain (almost) all
information learned by graphical models.
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The Neural CRF Layer

The emission score at position i, e-score(i) = NN(X) € RE, is
computed by a per-position neural scorer (C: number of classes).

Note: not to be confused with the emission probability in HMMs.
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The emission score at position i, e-score(i) = NN(X) € RE, is
computed by a per-position neural scorer (C: number of classes).
Note: not to be confused with the emission probability in HMMs.

The transition score between Y; and Yi11(€ RE* C), is stored as
parameters.
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The emission score at position i, e-score(i) = NN(X) € RE, is
computed by a per-position neural scorer (C: number of classes).
Note: not to be confused with the emission probability in HMMs.

The transition score between Y; and Yi11(€ RE* C), is stored as
parameters.

1 n n—1
P(Y|X) = 7% exp (Z e-score(i)y, + Z t-score(y;, y,-+1)>
i=1 '

i=1
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The Neural CRF Layer: Partition Function

Z(X) can be computed with the forward algorithm:

n n—1
Z(X) = ;exp (; e-score(i) s + ; t-score(y/, )/i+1)>
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The Neural CRF Layer: Partition Function

Z(X) can be computed with the forward algorithm:
n n—1
= Zexp Ze—score(i)}/l_ + Z t-score(y}, )/,'+1)
i=1 =1
n—1
=) .. Zexp Ze score(i)y, 4+ Y _ t-score(y;, yit1)
2

i=1
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The Neural CRF Layer: Partition Function

Z(X) can be computed with the forward algorithm:
n n—1
— Zexp Ze—score(i)}/l_ + 2 t-score(y}, yi1)
i=1 i=1
—1
_E Zexp Ze score(i)y, + E t-score(y;, yit+1)

i=1
:Zexp e—score(l)yl)'
I

n—1
(Z Zexp (Ze score(f)y, + Z t- score(y,,y,+1)>>

i=1
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The Neural CRF Layer: Partition Function

Z(X) can be computed with the forward algorithm:
n n—1
— Zexp Ze—score(i)}/l_ + 2 t-score(y}, yi1)
i=1 i=1
n—1
= E Zexp Ze score(i)y, + E t-score(y;, yit+1)

i=1
:Zexp e—score(l)yl)'
I

(Z Zexp (Ze score( nZilt score(y,,y,+1)>>

Y2 i=1

Training objective: maximize the log-likelihood of training data.

With automatic differentiation, compute P(Y | X) is everything!
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Next

Syntax and parsing
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