Dependency Parse Trees Dependency Parsing Algorithms
0000000000 0000000000000

CS 784: Computational Linguistics
Lecture 14: Syntax - Dependency Parsing

Freda Shi

School of Computer Science, University of Waterloo
fhs@uwaterloo.ca

March 6, 2025

Dependency Parse Trees Dependency Parsing Algorithms
©000000000 0000000000000

From Constituency to Dependency

S
/\
NP VP
\ _——
I hit NP PP
N N
the man with NP
PN
the bat

Boldfaced words: head of the phrase.

Dependency Parse Trees Dependency Parsing Algorithms
©000000000 0000000000000

From Constituency to Dependency

S hit
/\ /\
NP VP | hit
\ _—— \ _—
I hit NP PP I hit man with
N N T S
the man with NP the man with
PN PN
the bat the

Boldfaced words: head of the phrase.
Propagate the lexical heads up in the tree.

Dependency Parse Trees Dependency Parsing Algorithms
0000000000 0000000000000

From Constituency to Dependency

hit

/\

| hit

| _—

I hit man with
PN N
the man with bat

PN
the bat

Dependency Parse Trees Dependency Parsing Algorithms
0@00000000 0000000000000

From Constituency to Dependency

hit
T hit
| hit 7T
S I man with
I hit man with \ \
PN N the bat
the man with bat \
SN the
the bat

Remove the redundant nodes by keeping the top one.

Dependency Parse Trees Dependency Parsing Algorithms
0000000000 0000000000000

From Constituency to Dependency

hit
7 T
I man with
| |
the bat
|
the

Dependency Parse Trees Dependency Parsing Algorithms
00®0000000 0000000000000

From Constituency to Dependency

hit
7 T
I man with
\ \
the

\
the

h|t the man with the bat

Replace each edge with an arc from the head to the dependent.

Dependency Parse Trees Dependency Parsing Algorithms
000@000000 0000000000000

Dependency Parse: Properties

h|t the man with the bat

Dependency Parse Trees Dependency Parsing Algorithms
000@000000 0000000000000

Dependency Parse: Properties

h|t the man with the bat

® Each node is a word (in contrast, only leaf nodes are words in
constituency trees).

Dependency Parse Trees Dependency Parsing Algorithms
000@000000 0000000000000

Dependency Parse: Properties

h|t the man with the bat

® Each node is a word (in contrast, only leaf nodes are words in
constituency trees).
® Each node has at most one parent.

Dependency Parse Trees Dependency Parsing Algorithms
000@000000 0000000000000

Dependency Parse: Properties

h|t the man with the bat

® Each node is a word (in contrast, only leaf nodes are words in
constituency trees).

® Each node has at most one parent.

® There is one node that has no parent, called the root.

Dependency Parse Trees Dependency Parsing Algorithms
000@000000 0000000000000

Dependency Parse: Properties

prep
root

dobj pobj
nsubjl det det

N v N
| hit the man with the bat

Each node is a word (in contrast, only leaf nodes are words in
constituency trees).

Each node has at most one parent.

There is one node that has no parent, called the root.

Each edge can be labeled with a dependency relation.

Dependency Parse Trees
0000@00000

Some Dependency Relations

Causal Argument Relations Description

nsubj Nominal subject

dobj Direct object

iobj Indirect object

ccomp Clausal complement
xcomp Open clausal complement
Modifier Relations Description

nmod Nominal modifier

amod Adjectival modifier

[Source: SLP3]

Dependency Parse Trees
00000e0000

Dependency Parsing Algorithms
0000000000000

Projectivity

mod nmod

case adv
|
A

JetBlue canceled our flight this morning which was already late

Dependency Parse Trees
00000e0000

Dependency Parsing Algorithms

Projectivity
|
\ (mod)
|

| adv
\
JetBlue canceled our flight this mormng which was already late

A dependency parse is nonprojective if and only if there exist two
crossing dependency arcs

Dependency Parse Trees
00000e0000

Dependency Parsing Algorithms

Projectivity
(mod) nmod

S

“ case adv
|
¥

JetBlue canceled our flight this morning which was already late
A dependency parse is nonprojective if and only if there exist two
crossing dependency arcs.

Nonprojective dependency parse tree < discontinuous constituents
in constituency parse tree.

Dependency Parse Trees
00000e0000

Projectivity
(mod) \\nmod

| e
\

JetBlue canceled our flight this mormng which was already late

A dependency parse is nonprojective if and only if there exist two
crossing dependency arcs.

Nonprojective dependency parse tree < discontinuous constituents
in constituency parse tree.
English dependency treebanks are mostly projective.

® When focusing more on semantic relations, it often becomes more
nonprojective.

Dependency Parse Trees
00000e0000

Projectivity

— (mod) nmod

JetBlue canceled our fllght this mormng which was already late

A dependency parse is nonprojective if and only if there exist two
crossing dependency arcs.

Nonprojective dependency parse tree < discontinuous constituents
in constituency parse tree.

English dependency treebanks are mostly projective.

® When focusing more on semantic relations, it often becomes more
nonprojective.

Languages with relatively free word orders, like Czech, are fairly
nonprojective.

Dependency Parse Trees

Dependency Parsing Algorithms
0000008000

0000000000000

Universal Dependencies

The Universal Dependencies (UD) project aims to provide a
cross-linguistically consistent treebank annotation scheme.

https://universaldependencies.org/

advmod* aux

discourse cop
mark

amod det

conj fixed list compound punct
cc flat parataxis orphan root
goeswith dep

reparandum

= =3 = £ DA

8/24

https://universaldependencies.org/

Dependency Parse Trees Dependency Parsing Algorithms
0000000800 0000000000000

Universal Dependencies: An Intuitive Example

While detailed grammatical realizations differ across languages, the
underlying syntactic structure is often similar.

punct
obl
nsubj:pass- case-
!1 \E/—‘ aux:pass !/iﬁaet

dog was chased by the cat
pun:l
nsum pass-
2 Kyuero npecneasawe 01' KOTKaTa .
nsubj:pass- l punct:
3 Pes byl honén kogkou

punct
!nsubi:nass !:c;;h

4|Hunden jagades av katten

Dependency Parse Trees Dependency Parsing Algorithms
0000000800 0000000000000

Universal Dependencies: An Intuitive Example

While detailed grammatical realizations differ across languages, the
underlying syntactic structure is often similar.

Shi et al. (2022): multilingual language models enables zero-shot
cross-lingual dependency analysis, even for quite different language pairs.

punct
obl
nsubj:pass- case-
\g/—‘ aux:pass. g/;«aet

dog was chased by the cat
puncts
nsum pass
exﬂl%F cas:b_h
2 KyHeTo npecneasawe oT KOTKata .
nsubj pass punt[
3 Pes byl honén kockou E

punct
!nsum pass- case ’—h

4/ Hunden]agades av katten

Dependency Parse Trees Dependency Parsing Algorithms
0000000080 0000000000000

Evaluation of Dependency Parsing

Unlabeled attachment score (UAS): the proportion of words
that are assigned the correct head (suppose each word is assigned
with one head, and the dummy “root” is considered as a valid

head).

Dependency Parsing Algorithms

Dependency Parse Trees
0000000000000

0000000080

Evaluation of Dependency Parsing

Unlabeled attachment score (UAS): the proportion of words
that are assigned the correct head (suppose each word is assigned
with one head, and the dummy “root” is considered as a valid
head).

root root
Y f\l Y l Y
A cat meows A cat meows

Ti: To:

Dependency Parsing Algorithms

Dependency Parse Trees
0000000000000

0000000080

Evaluation of Dependency Parsing

Unlabeled attachment score (UAS): the proportion of words
that are assigned the correct head (suppose each word is assigned
with one head, and the dummy “root” is considered as a valid
head).

root root

— f_\l ™ l N
A cat meows A cat meows

Ti: To:
UAS(TE, T2) =

Dependency Parse Trees Dependency Parsing Algorithms
000000000e 0000000000000

Evaluation of Dependency Parsing

Labeled attachment score (LAS): the proportion of words that
are assigned the correct head and the correct dependency relation.

Dependency Parse Trees Dependency Parsing Algorithms
000000000e 0000000000000

Evaluation of Dependency Parsing

Labeled attachment score (LAS): the proportion of words that
are assigned the correct head and the correct dependency relation.

root root
det fns_ubj\l det %J
¥ N\ ¥ N\
A cat meows A cat meows

Ti: To:

Dependency Parse Trees Dependency Parsing Algorithms
000000000e 0000000000000

Evaluation of Dependency Parsing

Labeled attachment score (LAS): the proportion of words that
are assigned the correct head and the correct dependency relation.

root root
d nsubj J d dobj J
AN AN
A cat meows A cat meows
T1: Ta:

LAS(T1, T2) = 3

Dependency Parse Trees Dependency Parsing Algorithms
0000000000 ©000000000000

Recap: The General NLP Problem Formulation

parse(s) = arg max score(s,); ©)

Dependency Parse Trees Dependency Parsing Algorithms
0000000000 ®000000000000

Recap: The General NLP Problem Formulation

parse(s) = arg max score(s,); ©)
In the dependency parsing context, the score is usually

score(s, ;@) =) score(w; — wj; ©)

Wi— WJGy

Dependency Parsing Algorithms
©000000000000

Recap: The General NLP Problem Formulation

parse(s) = arg max score(s,); ©)
In the dependency parsing context, the score is usually
score(s, ;@) =) score(w; — wj; ©)
W,'—>Wj€y
The inference problem: assume we are already given the scores for

each possible dependency arc (among the n x (n— 1)), how to
find the best dependency tree?

Dependency Parse Trees Dependency Parsing Algorithms
©000000000000

Recap: The General NLP Problem Formulation

parse(s) = arg max score(s,); ©)
In the dependency parsing context, the score is usually
score(s, ;@) =) score(w; — wj; ©)
W,'—>Wj€y
The inference problem: assume we are already given the scores for

each possible dependency arc (among the n x (n— 1)), how to
find the best dependency tree?

If there are no structural constraints, it becomes the problem of
directed minimum spanning tree.

Dependency Parse Trees Dependency Parsing Algorithms
0000000000 ®000000000000

Recap: The General NLP Problem Formulation

parse(s) = arg max score(s,); ©)
In the dependency parsing context, the score is usually
score(s, ;@) =) score(w; — wj; ©)
W,'—>Wj€y
The inference problem: assume we are already given the scores for

each possible dependency arc (among the n x (n— 1)), how to
find the best dependency tree?

If there are no structural constraints, it becomes the problem of
directed minimum spanning tree.

In practice, we also sometimes only consider projective trees.

Dependency Parse Trees Dependency Parsing Algorithms
00C 00 0800000000000

Collins” Algorithm

Assume projectivity and unlabeled arcs—it can be easily extended
to labeled arcs by considering an additional dimension.

Dependency Parsing Algorithms
0®00000000000

Collins” Algorithm

Assume projectivity and unlabeled arcs—it can be easily extended
to labeled arcs by considering an additional dimension.

Collins (1996): a dynamic programming algorithm for finding the
highest scoring projective dependency tree, which shares the spirit
with the CKY algorithm for constituency parsing.

Dependency Parsing Algorithms
0®00000000000

Collins” Algorithm

Assume projectivity and unlabeled arcs—it can be easily extended
to labeled arcs by considering an additional dimension.

Collins (1996): a dynamic programming algorithm for finding the
highest scoring projective dependency tree, which shares the spirit
with the CKY algorithm for constituency parsing.

F[¢, r, t]: the highest scoring tree for the span [/, r] rooted at index
t(l<t<r).

Dependency Parsing Algorithms
0®00000000000

Collins” Algorithm
Assume projectivity and unlabeled arcs—it can be easily extended
to labeled arcs by considering an additional dimension.

Collins (1996): a dynamic programming algorithm for finding the
highest scoring projective dependency tree, which shares the spirit
with the CKY algorithm for constituency parsing.

F[¢, r, t]: the highest scoring tree for the span [/, r] rooted at index
t(l<t<r).

Example: F[3,5, 3] is the highest scoring tree for the span [3, 5]
(near the children) rooted at index 3 (near).

W

the cat near the children meows

Dependency Parsing Algorithms
0®00000000000

Collins” Algorithm
Assume projectivity and unlabeled arcs—it can be easily extended
to labeled arcs by considering an additional dimension.

Collins (1996): a dynamic programming algorithm for finding the
highest scoring projective dependency tree, which shares the spirit
with the CKY algorithm for constituency parsing.

F[¢, r, t]: the highest scoring tree for the span [/, r] rooted at index
t(l<t<r).

Example: F[3,5, 3] is the highest scoring tree for the span [3, 5]
(near the children) rooted at index 3 (near).

W

the cat near the children meows

Implicit assumption: when calculating F[/, r, t], we are thinking
about the hypothetical condition that [/, r] is a constituent.

Dependency Parse Trees Dependency Parsing Algorithms
0000000000 00®0000000000

Collins” Algorithm

Fl¢, r, t]
max F[¢,m, t;] + Flm+ 1, r, t] + score(t — t;),
<m<t
éﬁt[Sm
= max
max F[¢, m, t] + Fim+1,r, t,| 4 score(t — t,)
t<m<r

m<t,<r

Dependency Parse Trees Dependency Parsing Algorithms

Collins” Algorithm
Fl¢, r, t]

max F[¢,m, t;] + Flm+ 1, r, t] + score(t — t;),
<m<t
ZSthm

= max

max F[¢, m, t] + Fim+1,r, t,| 4 score(t — t,)
t<m<r
m<t.<r

Key idea: if tis the root of the tree, it must be the root of the
left /right subtree as well.

® m: the split point.

ty: the head of the left child.

ty: the head of the right child.

score(t; — t,): the score of the arc from t; to t,.

score(t; — ty): the score of the arc from ¢, to t.

Dependency Parse Trees Dependency Parsing Algorithms

Collins” Algorithm
Fl¢, r, t]

max F[¢,m, t;] + Flm+ 1, r, t] + score(t — t;),
<m<t
ZSthm

= max

max F[¢, m, t] + Fim+1,r, t,| 4 score(t — t,)
t<m<r
m<t.<r

Key idea: if tis the root of the tree, it must be the root of the
left /right subtree as well.

® m: the split point.

ty: the head of the left child.

ty: the head of the right child.

score(t; — t,): the score of the arc from t; to t,.

score(t; — ty): the score of the arc from ¢, to t.

Final Answer: maxi<t<n F[1, n, t].

Dependency Parse Trees Dependency Parsing Algorithms
0000000000 000@000000000

Collins” Algorithm

Fl¢, r, t]

max F[¢, m, t;] + Flm+1, r, t] + score(t — t),
L<m<t
(<ty<m

max Fl¢, m, t] + Flm+ 1, r, t,| 4+ score(t — t,)
t<m<r
m<t,<r

— max

Time complexity:

Dependency Parse Trees Dependency Parsing Algorithms
0000000000 O00®@000000000

Collins” Algorithm

Fl¢, r, t]

max F[¢, m, t;] + Flm+1, r, t] + score(t — t),
L<m<t
(<ty<m

max Fl¢, m, t] + Flm+ 1, r, t,| 4+ score(t — t,)
t<m<r
m<t,<r

— max

Time complexity: O(n®°).

rse Trees Dependency Parsing Algorithms
0008000000000

Collins” Algorithm

Fl¢, r, t]

max F[¢, m, t;] + Fim+1, r, t] + score(t — t;),
(Zh<m

max Fl¢, m, t] + Flm+ 1, r, t,| 4+ score(t — t,)
<m<r
m<t,<r

— max

Time complexity: O(n®°).

Space complexity:

Dependency Parse Trees Dependency Parsing Algorithms
0000000000 000@000000000

Collins” Algorithm

F[¢,r, t]
max F[¢, m, t;] + Fim+1, r, t] + score(t — t;),
(<h<m
= max
max F[¢,m, t] + Flm+1,r, t,] + score(t — t,)

t<m<r
m<t,<r

Time complexity: O(n®).
Space complexity: O(n%) to store all F[(,r, t].

Dependency Parsing Algorithms
000®000000000

Collins” Algorithm

F[¢,r, t]
max F[¢, m, t;] + Flm+1, r, t] + score(t — t),

(<m<t
éﬁt/gm

max Fl¢, m, t] + Flm+ 1, r, t,| 4+ score(t — t,)
<m<r
m<t,<r

— max

Time complexity: O(n®).
Space complexity: O(n%) to store all F[(,r, t].

The Eisner’s algorithm (1996) improves the time complexity to
O(n?) and space complexity to O(n?), with some smart
realization of the “trapezoid” structure.

Dependency Parse Trees Dependency Parsing Algorithms
0000000000 0000@00000000

Chu-Liu/Edmonds’ Algorithm

Proposed independently by Yoeng-Jin Chu and Tseng-Hong Liu
(1965) and Jack Edmonds (1967).

® Finds the maximum spanning tree (arborescence) in a directed graph.

Parse Trees Dependency Parsing Algorithms
0000e00000000

Chu-Liu/Edmonds’ Algorithm

Proposed independently by Yoeng-Jin Chu and Tseng-Hong Liu
(1965) and Jack Edmonds (1967).

® Finds the maximum spanning tree (arborescence) in a directed graph.
® Does not require projectivity constraint.

Dependency Parsing Algorithms
0000®00000000

Chu-Liu/Edmonds’ Algorithm

Proposed independently by Yoeng-Jin Chu and Tseng-Hong Liu
(1965) and Jack Edmonds (1967).

® Finds the maximum spanning tree (arborescence) in a directed graph.
® Does not require projectivity constraint.
® Algorithm overview:

1. Start with selecting the best incoming edge for each node.
2. If this creates a tree, we're done.

Dependency Parsing Algorithms
0000®00000000

Chu-Liu/Edmonds’ Algorithm

Proposed independently by Yoeng-Jin Chu and Tseng-Hong Liu
(1965) and Jack Edmonds (1967).

® Finds the maximum spanning tree (arborescence) in a directed graph.
® Does not require projectivity constraint.
® Algorithm overview:

1. Start with selecting the best incoming edge for each node.
2. If this creates a tree, we're done.

3. If there's a cycle, contract it into a single node.

Dependency Parsing Algorithms
0000®00000000

Chu-Liu/Edmonds’ Algorithm

Proposed independently by Yoeng-Jin Chu and Tseng-Hong Liu
(1965) and Jack Edmonds (1967).

® Finds the maximum spanning tree (arborescence) in a directed graph.
® Does not require projectivity constraint.

® Algorithm overview:

Start with selecting the best incoming edge for each node.

If this creates a tree, we're done.

If there's a cycle, contract it into a single node.

Recalculate edge scores in the contracted graph.

e

Dependency Parsing Algorithms
0000®00000000

Chu-Liu/Edmonds’ Algorithm

Proposed independently by Yoeng-Jin Chu and Tseng-Hong Liu
(1965) and Jack Edmonds (1967).

® Finds the maximum spanning tree (arborescence) in a directed graph.
® Does not require projectivity constraint.

® Algorithm overview:

Start with selecting the best incoming edge for each node.

If this creates a tree, we're done.

If there's a cycle, contract it into a single node.

Recalculate edge scores in the contracted graph.

Recursively find the best tree in the new graph.

Expand the contracted node back into a cycle.

A o

Dependency Parse Trees Dependency Parsing Algorithms
0000000000 00000®0000000

Running Chu-Liu/Edmonds’ Algorithm with an Example

Without loss of generality, we assume the root is node A—in
practice, we may need to enumerate.

Dependency Parse Trees Dependency Parsing Algorithms
0000000000 000000@000000

Running Chu-Liu/Edmonds’ Algorithm with an Example

Step 1: since we assume A is the root, we remove all incoming
edges to A.

Dependency Parse Trees Dependency Parsing Algorithms
0000000000 0000000800000

Running Chu-Liu/Edmonds’ Algorithm with an Example

Step 2: find the highest scoring incoming edge for each node.

Dependency Parse Trees Dependency Parsing Algorithms
0000000000 00000000e0000

Running Chu-Liu/Edmonds’ Algorithm with an Example

Step 3.1: Contract the loop (B-C) into one node, and create a new
graph.

Dependency Parse Trees Dependency Parsing Algorithms
0000000000 0000000008000

Running Chu-Liu/Edmonds’ Algorithm with an Example

Step 3.2: Contract the loop (B-C) into one node, and create a new
graph, with the adjusted weights.

Dependency Parse Trees Dependency Parsing Algorithms
0000000000 0000000008000

Running Chu-Liu/Edmonds’ Algorithm with an Example

Step 3.2: Contract the loop (B-C) into one node, and create a new
graph, with the adjusted weights.

Repeat the process until we find the maximum spanning tree.

Dependency Parsing Algorithms
00000000 0000000000800

Complexity Analysis

® Time complexity: O(EV) for dense graphs, can be improved to
O(Elog V) with optimized implementations.

® Space complexity: O(E+ V) to store the sparse graph, or O(V2) for
dense graphs.

® Handles non-projective dependencies.

Dependency Parsing Algorithms
0000000000800

Complexity Analysis

® Time complexity: O(EV) for dense graphs, can be improved to
O(Elog V) with optimized implementations.

® Space complexity: O(E+ V) to store the sparse graph, or O(V2) for
dense graphs.

® Handles non-projective dependencies.

When to use:

® Use Collins' (or Eisner's) when you can assume projectivity.
® Use Chu-Liu-Edmonds when non-projective structures are important.

® Many languages with free word order benefit from non-projective
parsing.

Dependency Parse Trees Dependency Parsing Algorithms
00 > 0000000000080

Neural Dependency Parsers

Take (contextualized) word representations, and predict the scores
between each pair of words.

Maximize the ground-truth arc scores in the training set.

https://spacy.io/

Dependency Parsing Algorithms
0000000000000

Neural Dependency Parsers

Take (contextualized) word representations, and predict the scores
between each pair of words.

Maximize the ground-truth arc scores in the training set.

We will still need the inference algorithms on top of the neural
scorer to obtain the trees!

https://spacy.io/

Dependency Parsing Algorithms
0000000000000

Neural Dependency Parsers

Take (contextualized) word representations, and predict the scores
between each pair of words.

Maximize the ground-truth arc scores in the training set.

We will still need the inference algorithms on top of the neural
scorer to obtain the trees!

See more in Dozat and Manning (2017) for an example of neural
dependency parsing.

https://spacy.io/

Dependency Parsing Algorithms
0000000000000

Neural Dependency Parsers

Take (contextualized) word representations, and predict the scores
between each pair of words.

Maximize the ground-truth arc scores in the training set.

We will still need the inference algorithms on top of the neural
scorer to obtain the trees!

See more in Dozat and Manning (2017) for an example of neural
dependency parsing.

Now: https://spacy.io/ offers high-quality off-the-shelf
dependency parsers.

https://spacy.io/

Parse Trees Dependency Parsing Algorithms
o 000000000000 e

Next

Semantics: Compositionality, Semantic Role Labeling, Lambda
Calculus

	Dependency Parse Trees
	Dependency Parsing Algorithms

