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From Constituency to Dependency

S
/\
NP VP
\ _——
I hit NP PP
N N
the man with NP
PN
the bat

Boldfaced words: head of the phrase.
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From Constituency to Dependency

S hit
/\ /\
NP VP | hit
\ _—— \ _—
I hit NP PP I hit man with
N N T S
the man with NP the man with
PN PN
the bat the

Boldfaced words: head of the phrase.
Propagate the lexical heads up in the tree.
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From Constituency to Dependency

hit

/\

| hit

| _—

I hit man with
PN N
the man with bat

PN
the bat
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From Constituency to Dependency

hit
T hit
| hit 7T
S I man with
I hit man with \ \
PN N the bat
the man with bat \
SN the
the bat

Remove the redundant nodes by keeping the top one.
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From Constituency to Dependency

hit
7 T
I man with
| |
the bat
|
the
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From Constituency to Dependency

hit
7 T
I man with
\ \
the

\
the

h|t the man  with the bat

Replace each edge with an arc from the head to the dependent.
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Dependency Parse: Properties

h|t the man  with the bat
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Dependency Parse: Properties

h|t the man  with the bat

® Each node is a word (in contrast, only leaf nodes are words in
constituency trees).
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Dependency Parse: Properties

h|t the man  with the bat

® Each node is a word (in contrast, only leaf nodes are words in
constituency trees).
® Each node has at most one parent.
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Dependency Parse: Properties

h|t the man  with the bat

® Each node is a word (in contrast, only leaf nodes are words in
constituency trees).

® Each node has at most one parent.

® There is one node that has no parent, called the root.
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Dependency Parse: Properties

prep
root

dobj pobj
nsubjl det det

N v N
|  hit the man with the bat

Each node is a word (in contrast, only leaf nodes are words in
constituency trees).

Each node has at most one parent.

There is one node that has no parent, called the root.

Each edge can be labeled with a dependency relation.
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Some Dependency Relations

Causal Argument Relations Description

nsubj Nominal subject

dobj Direct object

iobj Indirect object

ccomp Clausal complement
xcomp Open clausal complement
Modifier Relations Description

nmod Nominal modifier

amod Adjectival modifier

[Source: SLP3]
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Projectivity

mod nmod

case adv
|
A

JetBlue canceled our flight this morning which was already late
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Projectivity
|
\ (mod)
|

| adv
\
JetBlue canceled our flight this mormng which was already late

A dependency parse is nonprojective if and only if there exist two
crossing dependency arcs
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Projectivity
(mod) nmod

S

“ case adv
|
¥

JetBlue canceled our flight this morning which was already late
A dependency parse is nonprojective if and only if there exist two
crossing dependency arcs.

Nonprojective dependency parse tree < discontinuous constituents
in constituency parse tree.
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Projectivity
(mod) \\nmod

| e
\

JetBlue canceled our flight this mormng which was already late

A dependency parse is nonprojective if and only if there exist two
crossing dependency arcs.

Nonprojective dependency parse tree < discontinuous constituents
in constituency parse tree.
English dependency treebanks are mostly projective.

® When focusing more on semantic relations, it often becomes more
nonprojective.
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Projectivity

— (mod) nmod

JetBlue canceled our fllght this mormng which was already late

A dependency parse is nonprojective if and only if there exist two
crossing dependency arcs.

Nonprojective dependency parse tree < discontinuous constituents
in constituency parse tree.

English dependency treebanks are mostly projective.

® When focusing more on semantic relations, it often becomes more
nonprojective.

Languages with relatively free word orders, like Czech, are fairly
nonprojective.
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Universal Dependencies

The Universal Dependencies (UD) project aims to provide a
cross-linguistically consistent treebank annotation scheme.

https://universaldependencies.org/

advmod* aux

discourse cop
mark

amod det

conj fixed list compound punct
cc flat parataxis orphan root
goeswith dep

reparandum

= =3 = £ DA

8/24


https://universaldependencies.org/
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Universal Dependencies: An Intuitive Example

While detailed grammatical realizations differ across languages, the
underlying syntactic structure is often similar.

punct
obl
nsubj:pass- case-
!1 \E/—‘ aux:pass !/iﬁaet

dog was chased by the cat
pun:l
nsum pass-
2 Kyuero npecneasawe 01' KOTKaTa .
nsubj:pass- l punct:
3 Pes byl honén  kogkou

punct
!nsubi:nass !:c;;h

4|Hunden jagades av katten
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Universal Dependencies: An Intuitive Example

While detailed grammatical realizations differ across languages, the
underlying syntactic structure is often similar.

Shi et al. (2022): multilingual language models enables zero-shot
cross-lingual dependency analysis, even for quite different language pairs.

punct
obl
nsubj:pass- case-
\g/—‘ aux:pass. g/;«aet

dog was chased by the cat
puncts
nsum pass
exﬂl%F cas:b_h
2 KyHeTo npecneasawe oT KOTKata .
nsubj pass punt[
3 Pes byl honén kockou E

punct
!nsum pass- case ’—h

4/ Hunden ]agades av katten
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Evaluation of Dependency Parsing

Unlabeled attachment score (UAS): the proportion of words
that are assigned the correct head (suppose each word is assigned
with one head, and the dummy “root” is considered as a valid

head).
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Evaluation of Dependency Parsing

Unlabeled attachment score (UAS): the proportion of words
that are assigned the correct head (suppose each word is assigned
with one head, and the dummy “root” is considered as a valid
head).

root root
Y f\l Y l Y
A cat meows A cat meows

Ti: To:
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Evaluation of Dependency Parsing

Unlabeled attachment score (UAS): the proportion of words
that are assigned the correct head (suppose each word is assigned
with one head, and the dummy “root” is considered as a valid
head).

root root

— f_\l ™ l N
A cat meows A cat meows

Ti: To:
UAS(TE, T2) =
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Evaluation of Dependency Parsing

Labeled attachment score (LAS): the proportion of words that
are assigned the correct head and the correct dependency relation.
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Evaluation of Dependency Parsing

Labeled attachment score (LAS): the proportion of words that
are assigned the correct head and the correct dependency relation.

root root
det fns_ubj\l det %J
¥ N\ ¥ N\
A cat meows A cat meows

Ti: To:



Dependency Parse Trees Dependency Parsing Algorithms
000000000e 0000000000000

Evaluation of Dependency Parsing

Labeled attachment score (LAS): the proportion of words that
are assigned the correct head and the correct dependency relation.

root root
d nsubj J d dobj J
AN AN
A cat meows A cat meows
T1: Ta:

LAS(T1, T2) = 3
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Recap: The General NLP Problem Formulation

parse(s) = arg max score(s, ); ©)
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Recap: The General NLP Problem Formulation

parse(s) = arg max score(s, ); ©)
In the dependency parsing context, the score is usually

score(s, ;@) = ) score(w; — wj; ©)

Wi— WJGy
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Recap: The General NLP Problem Formulation

parse(s) = arg max score(s, ); ©)
In the dependency parsing context, the score is usually
score(s, ;@) = ) score(w; — wj; ©)
W,'—>Wj€y
The inference problem: assume we are already given the scores for

each possible dependency arc (among the n x (n— 1)), how to
find the best dependency tree?
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parse(s) = arg max score(s, ); ©)
In the dependency parsing context, the score is usually
score(s, ;@) = ) score(w; — wj; ©)
W,'—>Wj€y
The inference problem: assume we are already given the scores for

each possible dependency arc (among the n x (n— 1)), how to
find the best dependency tree?

If there are no structural constraints, it becomes the problem of
directed minimum spanning tree.
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Recap: The General NLP Problem Formulation

parse(s) = arg max score(s, ); ©)
In the dependency parsing context, the score is usually
score(s, ;@) = ) score(w; — wj; ©)
W,'—>Wj€y
The inference problem: assume we are already given the scores for

each possible dependency arc (among the n x (n— 1)), how to
find the best dependency tree?

If there are no structural constraints, it becomes the problem of
directed minimum spanning tree.

In practice, we also sometimes only consider projective trees.
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Collins” Algorithm

Assume projectivity and unlabeled arcs—it can be easily extended
to labeled arcs by considering an additional dimension.
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Assume projectivity and unlabeled arcs—it can be easily extended
to labeled arcs by considering an additional dimension.

Collins (1996): a dynamic programming algorithm for finding the
highest scoring projective dependency tree, which shares the spirit
with the CKY algorithm for constituency parsing.
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Collins” Algorithm

Assume projectivity and unlabeled arcs—it can be easily extended
to labeled arcs by considering an additional dimension.

Collins (1996): a dynamic programming algorithm for finding the
highest scoring projective dependency tree, which shares the spirit
with the CKY algorithm for constituency parsing.

F[¢, r, t]: the highest scoring tree for the span [/, r] rooted at index
t(l<t<r).
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Collins” Algorithm
Assume projectivity and unlabeled arcs—it can be easily extended
to labeled arcs by considering an additional dimension.

Collins (1996): a dynamic programming algorithm for finding the
highest scoring projective dependency tree, which shares the spirit
with the CKY algorithm for constituency parsing.

F[¢, r, t]: the highest scoring tree for the span [/, r] rooted at index
t(l<t<r).

Example: F[3,5, 3] is the highest scoring tree for the span [3, 5]
(near the children) rooted at index 3 (near).

W

the cat near the children meows
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Collins” Algorithm
Assume projectivity and unlabeled arcs—it can be easily extended
to labeled arcs by considering an additional dimension.

Collins (1996): a dynamic programming algorithm for finding the
highest scoring projective dependency tree, which shares the spirit
with the CKY algorithm for constituency parsing.

F[¢, r, t]: the highest scoring tree for the span [/, r] rooted at index
t(l<t<r).

Example: F[3,5, 3] is the highest scoring tree for the span [3, 5]
(near the children) rooted at index 3 (near).

W

the cat near the children meows

Implicit assumption: when calculating F[/, r, t], we are thinking
about the hypothetical condition that [/, r] is a constituent.
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Collins” Algorithm

Fl¢, r, t]
max F[¢,m, t;] + Flm+ 1, r, t] + score(t — t;),
<m<t
éﬁt[Sm
= max
max F[¢, m, t] + Fim+1,r, t,| 4 score(t — t,)
t<m<r

m<t,<r
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Collins” Algorithm
Fl¢, r, t]

max F[¢,m, t;] + Flm+ 1, r, t] + score(t — t;),
<m<t
ZSthm

= max

max F[¢, m, t] + Fim+1,r, t,| 4 score(t — t,)
t<m<r
m<t.<r

Key idea: if tis the root of the tree, it must be the root of the
left /right subtree as well.

® m: the split point.

ty: the head of the left child.

ty: the head of the right child.

score(t; — t,): the score of the arc from t; to t,.

score(t; — ty): the score of the arc from ¢, to t.
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Collins” Algorithm
Fl¢, r, t]

max F[¢,m, t;] + Flm+ 1, r, t] + score(t — t;),
<m<t
ZSthm

= max

max F[¢, m, t] + Fim+1,r, t,| 4 score(t — t,)
t<m<r
m<t.<r

Key idea: if tis the root of the tree, it must be the root of the
left /right subtree as well.

® m: the split point.

ty: the head of the left child.

ty: the head of the right child.

score(t; — t,): the score of the arc from t; to t,.

score(t; — ty): the score of the arc from ¢, to t.

Final Answer: maxi<t<n F[1, n, t].
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Collins” Algorithm

Fl¢, r, t]

max F[¢, m, t;] + Flm+1, r, t] + score(t — t),
L<m<t
(<ty<m

max Fl¢, m, t] + Flm+ 1, r, t,| 4+ score(t — t,)
t<m<r
m<t,<r

— max

Time complexity:
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Collins” Algorithm

Fl¢, r, t]

max F[¢, m, t;] + Flm+1, r, t] + score(t — t),
L<m<t
(<ty<m

max Fl¢, m, t] + Flm+ 1, r, t,| 4+ score(t — t,)
t<m<r
m<t,<r

— max

Time complexity: O(n®°).
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Collins” Algorithm

Fl¢, r, t]

max F[¢, m, t;] + Fim+1, r, t] + score(t — t;),
(Zh<m

max Fl¢, m, t] + Flm+ 1, r, t,| 4+ score(t — t,)
<m<r
m<t,<r

— max

Time complexity: O(n®°).

Space complexity:
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Collins” Algorithm

F[¢,r, t]
max F[¢, m, t;] + Fim+1, r, t] + score(t — t;),
(<h<m
= max
max F[¢,m, t] + Flm+1,r, t,] + score(t — t,)

t<m<r
m<t,<r

Time complexity: O(n®).
Space complexity: O(n%) to store all F[(,r, t].



Dependency Parsing Algorithms
000®000000000

Collins” Algorithm

F[¢,r, t]
max F[¢, m, t;] + Flm+1, r, t] + score(t — t),

(<m<t
éﬁt/gm

max Fl¢, m, t] + Flm+ 1, r, t,| 4+ score(t — t,)
<m<r
m<t,<r

— max

Time complexity: O(n®).
Space complexity: O(n%) to store all F[(,r, t].

The Eisner’s algorithm (1996) improves the time complexity to
O(n?) and space complexity to O(n?), with some smart
realization of the “trapezoid” structure.
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Chu-Liu/Edmonds’ Algorithm

Proposed independently by Yoeng-Jin Chu and Tseng-Hong Liu
(1965) and Jack Edmonds (1967).

® Finds the maximum spanning tree (arborescence) in a directed graph.
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Proposed independently by Yoeng-Jin Chu and Tseng-Hong Liu
(1965) and Jack Edmonds (1967).

® Finds the maximum spanning tree (arborescence) in a directed graph.
® Does not require projectivity constraint.
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Chu-Liu/Edmonds’ Algorithm

Proposed independently by Yoeng-Jin Chu and Tseng-Hong Liu
(1965) and Jack Edmonds (1967).

® Finds the maximum spanning tree (arborescence) in a directed graph.
® Does not require projectivity constraint.
® Algorithm overview:

1. Start with selecting the best incoming edge for each node.
2. If this creates a tree, we're done.
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Chu-Liu/Edmonds’ Algorithm

Proposed independently by Yoeng-Jin Chu and Tseng-Hong Liu
(1965) and Jack Edmonds (1967).

® Finds the maximum spanning tree (arborescence) in a directed graph.
® Does not require projectivity constraint.
® Algorithm overview:

1. Start with selecting the best incoming edge for each node.
2. If this creates a tree, we're done.

3. If there's a cycle, contract it into a single node.
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Chu-Liu/Edmonds’ Algorithm

Proposed independently by Yoeng-Jin Chu and Tseng-Hong Liu
(1965) and Jack Edmonds (1967).

® Finds the maximum spanning tree (arborescence) in a directed graph.
® Does not require projectivity constraint.

® Algorithm overview:

Start with selecting the best incoming edge for each node.

If this creates a tree, we're done.

If there's a cycle, contract it into a single node.

Recalculate edge scores in the contracted graph.

e
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Chu-Liu/Edmonds’ Algorithm

Proposed independently by Yoeng-Jin Chu and Tseng-Hong Liu
(1965) and Jack Edmonds (1967).

® Finds the maximum spanning tree (arborescence) in a directed graph.
® Does not require projectivity constraint.

® Algorithm overview:

Start with selecting the best incoming edge for each node.

If this creates a tree, we're done.

If there's a cycle, contract it into a single node.

Recalculate edge scores in the contracted graph.

Recursively find the best tree in the new graph.

Expand the contracted node back into a cycle.

A o
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Running Chu-Liu/Edmonds’ Algorithm with an Example

Without loss of generality, we assume the root is node A—in
practice, we may need to enumerate.
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Running Chu-Liu/Edmonds’ Algorithm with an Example

Step 1: since we assume A is the root, we remove all incoming
edges to A.
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Running Chu-Liu/Edmonds’ Algorithm with an Example

Step 2: find the highest scoring incoming edge for each node.
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Running Chu-Liu/Edmonds’ Algorithm with an Example

Step 3.1: Contract the loop (B-C) into one node, and create a new
graph.
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Running Chu-Liu/Edmonds’ Algorithm with an Example

Step 3.2: Contract the loop (B-C) into one node, and create a new
graph, with the adjusted weights.
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Running Chu-Liu/Edmonds’ Algorithm with an Example

Step 3.2: Contract the loop (B-C) into one node, and create a new
graph, with the adjusted weights.

Repeat the process until we find the maximum spanning tree.
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Complexity Analysis

® Time complexity: O(EV) for dense graphs, can be improved to
O(Elog V) with optimized implementations.

® Space complexity: O(E+ V) to store the sparse graph, or O(V2) for
dense graphs.

® Handles non-projective dependencies.
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Complexity Analysis

® Time complexity: O(EV) for dense graphs, can be improved to
O(Elog V) with optimized implementations.

® Space complexity: O(E+ V) to store the sparse graph, or O(V2) for
dense graphs.

® Handles non-projective dependencies.

When to use:

® Use Collins' (or Eisner's) when you can assume projectivity.
® Use Chu-Liu-Edmonds when non-projective structures are important.

® Many languages with free word order benefit from non-projective
parsing.
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Neural Dependency Parsers

Take (contextualized) word representations, and predict the scores
between each pair of words.

Maximize the ground-truth arc scores in the training set.


https://spacy.io/
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Maximize the ground-truth arc scores in the training set.

We will still need the inference algorithms on top of the neural
scorer to obtain the trees!
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Take (contextualized) word representations, and predict the scores
between each pair of words.

Maximize the ground-truth arc scores in the training set.

We will still need the inference algorithms on top of the neural
scorer to obtain the trees!

See more in Dozat and Manning (2017) for an example of neural
dependency parsing.
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Neural Dependency Parsers

Take (contextualized) word representations, and predict the scores
between each pair of words.

Maximize the ground-truth arc scores in the training set.

We will still need the inference algorithms on top of the neural
scorer to obtain the trees!

See more in Dozat and Manning (2017) for an example of neural
dependency parsing.

Now: https://spacy.io/ offers high-quality off-the-shelf
dependency parsers.


https://spacy.io/
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Next

Semantics: Compositionality, Semantic Role Labeling, Lambda
Calculus
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